
1

Distributed Virtual LABoratory
DiViLab

Active Document Manual

Authors Verdejo, M.F.; Barros, B.; Read, T.;

Mayorga, J.I, Vélez, J., Calero, M.Y.
(UNED); Viéville, C. (USTL);
Pinkwart, N., Hoppe, U., Schmidt, P.
(UDUI)

Emitting Partner P5-UNED
Responsible
Validated by
Sent for information only
Sent for action
Deliverable n° 7.6
Workpackage n° WP7
Cost
Document is public ?
For EC ?

 2

 3

Active document Manual

Contents

1 Introduction ...5
2 Installation of an AD Server............................6

2.1 System requirements ... 7
2.2 Installing the program.. 7

2.2.1 Copy of Installation files ... 7
2.2.2 Copy of libraries .. 8
2.2.3 Running the installation program .. 9
2.2.4 Updating after the changes .. 17
2.2.5 Possible errors produced during installation ... 18

2.2.5.1 Connection errors with the ADServerSetup .. 18
2.2.5.2 Format errors in the values entered by the user...................................... 18
2.2.5.3 Context errors provoked by previous installations 18
2.2.5.4 Errors with the DB... 19

2.2.6 Configuration file .. 19
2.2.6.1 Elements for configuring the AD environment 19

2.2.7 Un-installation of the ADServer.. 30
2.3 Installing the Task Manager .. 31

3 Installation of an AD client............................ 33
3.1 System requirements ... 33
3.2 Installing the program.. 33

3.2.1 Navigator ... 33
3.2.2 Java plugin... 34
3.2.3 SVG plugin .. 34

3.3 Creation of a new AD.. 34
3.3.1 Errors when a new AD is created .. 44

3.4 Description of the AD XML files.. 44
4 Using and Configuring the AD system............. 46

4.1 Working in the system as a learning scenario designer................................... 47
4.1.1 The XML files which are used to define a scenario with the AD 52

4.1.1.1 Tool types .. 53
4.1.2 The DescriptionAD ... 53

4.1.2.1 AD elements .. 53
4.1.2.2 Editing the AD-definition XML file.. 64
4.1.2.3 Definition of prerequisites ... 75
4.1.2.4 Defining internal tools ... 82

 4

4.1.2.5 Defining the correction tool... 89
4.1.3 Definition of the resources... 93

4.1.3.1 Elements for defining a resource ... 93
4.1.3.2 Editing a resource XML file .. 96

4.1.4 Definition of the community.. 104
4.1.4.1 Elements for defining a community... 105
4.1.4.2 Editing a community XML file ... 109

4.1.5 The results.. 119
4.1.5.1 What is the results file?.. 119

4.2 Working on an AD scenario as a student... 120
4.2.1 Login the system.. 121
4.2.2 The interface .. 123
4.2.3 How to interact with the environment ... 124

4.2.3.1 Use of internal tools within the tasks... 127
4.2.3.2 Navigation menu.. 128
4.2.3.3 Tool Bar ... 132
4.2.3.4 Prerequisites revisited .. 134

4.2.4 Errors that can be produced when using the system in the role of student
 134

4.3 Working on an AD scenario as a teacher... 137
4.3.1 Login the system.. 137
4.3.2 The Monitor ... 139
4.3.3 The AD Corrector .. 145
4.3.4 How to interact with the correction tool .. 146

4.3.4.1 Marking.. 146
4.3.4.2 Viewing.. 150
4.3.4.3 Details of the correction tool ... 152

4.3.5 Errors that can happen when using the system with the role of teacher 152
4.4 Eliminating an AD... 153

5 Application..153

5

1 Introduction

This document presents the ActiveDocument (AD) System from two different
viewpoints, firstly, that of the installation, the system requirements, the actual
installation process, and the possible errors that can occur. Secondly, that of a user,
which in itself can be divided into three types: a scenario designer, a student, and a
teacher. Each of which will be detailed together with the option and functions available.
For a more general view of the AD System, its architecture and the way scenarios are
built, the reader should consult the DiViLab deliverable D7.5, and for more specific
information about the chemistry scenario mentioned here, the reader should consult the
UNED technical report TR1.

The Active Document enables collaborative learning activities to be carried out, using a
variety of tools and resources, in a distributed framework. It has been implemented with
Java and XML technologies and has an underlying client/server architecture. The server
runs on a SUN server with Tomcat, msQL and Java. Any client can connect to the AD
services using a standard web browser. Emphasis is placed on learning experimental
sciences where there is a pressing need for students to improve their learning processes
with a better understanding of theory and practice throughout the academic year,
especially in the context of distance learning. A way forward is to engage the students in
a variety of activities, including the performance of experiments either in real or virtual
settings, supported by a distributed collaborative computer environment. The premise
here is to offer a persistent, structured, dynamic, active and personal work space to
sustain their constructs in a long term learning process.

In the context of the DiViLab project the ActiveDocument (which has been developed
during the project) is being extended to make use of related components developed by
other groups in the project, namely the Task Manager (developed by USTL) and the
Monitor (developed by UDUI). The objective of the former is to reflect the state of the
work by building views. This state is built according different points of view and
according, at the same time, the level of detail required by the client which requires
access to different views.

The relation between the Active Document and the Task Manager and Monitor can be
seen in figure 1. The former receives both the declaration of the experiment and its
participants before an experiment is started (and then as the experiment is undertaken,
the ongoing student progress) and the latter permits the teacher or tutor to interact with
this information and see different views of it. It should be noted, that the Task Manager
is transparent to the user, is does not as such present a direct user interface when used
from the Active Document. The students experience its action in terms of permissions to
advance from one task to the next within the experiment and the teachers in terms of the
views provided to the Monitor.

 6

start Monitor

Description

Active
Document

Community

Active
Document

Resources

Active
Document

Active Document System

Figure 1. The DiViLab prototype

Now, the task manager is ready to reflect the users’ interactions with the all the
resources within a course. Each time the user makes a significant interaction which can
change the state of a workitem, the ActiveDocument sends an event to the Task Manager
to maintain the state of the scenario.

The Monitor is being developed by UDUI that gives tutors a fast and precise overview
enables them to get informed of students with minor or greater problems solving the
tasks. It is important that teachers know about that so they are able to react in a fashion
they like. In the same way students with great performance can be easily found and
perhaps be contacted to help others with needs.

In chapter 2, the installation of the AD server is detailed together with system
requirements. In chapter 3, the installation of the AD client is detailed, reflecting not
only the AD tools but also the plugins and associated applications that are required.
Subsequently, in chapter 4, the way in which the AD system can be used is presented
from three different views, that of designer, student, and teacher.

2 Installation of an AD Server
Throughout this section, the hardware and software requirements necessary to install the
server program for the Active Document will be explained.

 7

2.1 System requirements

Hardware:

 512 MB RAM

Operating Systems:

 Windows
 Linux
 Solaris

Software:

 Programs:
MySQL 3.23.49
j2sdk1.4
Tomcat 4.1.18

 Required library programs:

Xerces 2.0.1 xercesImpl.jar and xmlParserAPIs.jar
Xalan 2.4.0 xalan.jar

2.2 Installing the program
The installation program is a web application and we will be using Tomcat as a web
server to run it.

2.2.1 Copy of Installation files
First of all, the installation program must be copied on the machine where the Active
Document Server is being installed.

Since the installation program works as a web application and Tomcat will be used as a
web server to run it, the installation program must be unzipped in a specific directory
within the structure of the Tomcat folders, specifically at the directory “webapps”.

The installation process will generate a folder called “ADServerSetup” or a new context
within Tomcat called “ADServerSetup”.

Next we describe the process to be followed depending on the operating system we have
installed.

In Windows:
Run ADServerSetup.exe, and a window like in figure 2 will show up.

 8

Figure 2. Decompresing the installation file

1. Click on Browse to indicate where to unzip the files within the folder “webapps”
from the tree of directories from Tomcat whose location will depend on where it
is installed in our machine. (In our case it is in c:/tomcat/webapps).

2. Click on unzip to proceed to unzipping.

In Linux and Solaris:
To unzip the installation package ADServerSetup.tar.gz within the directory webapps of
Tomcat:

1. Copy the file ADServerSetup.zip within the directory webapps of Tomcat.
2. Run: unzip ADServerSetup.zip
3. Ensure that the directory ADServerSetup (and everything under it) is owned by

the user that tomcat will run as (e. g. the tomcat user).

2.2.2 Copy of libraries

In order for the installation program to work, it is very important that some determined
jar files which are included in certain libraries be included in the Tomcat directory.

These files are:

 Xerces 2.0.1 xercesImpl.jar and xmlParserAPIs.jar
 Xalan 2.4.0 xalan.jar

 9

If they aren’t there, we will lose a copy of said files inside the directory common/lib of
Tomcat.

In the case of having files pertaining to prior versions of these same libraries, we will
proceed to eliminate and copy the indicated files in order to avoid problems of
compatibility.

2.2.3 Running the installation program

The process of installation of the Active Document Server contains a series of steps; we
need some determined steps to be active, to connect to the installation program thorough
the navigator, to enter the configuration parameters necessary for the ADServer, and
finally to carry out the copying of the files that compose the ADServer.

During the installation, an AD called “ADExample” is also created which allows us to
get a bit closer to the definition of AD and it will help us get to know the function of the
ADServer.

Next we will describe the steps to be followed in more detail.

1. Run Tomcat.

2. Run the database MySQL.

3. Run a navigator and connect to http://localhost:catalina_port/ADServerSetup
(catalina_port is the number of the open port to communicate with Tomcat). An
installation window of the Active Document Server will show up (figure 3).
In this window we will see a button called “Setup”, which we will click on to
begin the process of the installation of the ADServer.

 10

Figure 3. Accesing the ADServer installation

4. Configuration of the ADServer:

After clicking on the “Setup” button a window shows up (figure 4) where we are
asked for information relative to the system that is necessary for the
configuration of the ADServer.

 11

Figure 4. Accessing the ADServer installation setup

This information is divided into five subsections. Next we will go on to discover exactly
what each of the data asked for refers to.

General specifications
Data relative to the identification of the machine

Host Name Explanation It refers to the complete name of the machine in
which we are installing the ADServer. It could be
the IP address or the complete name.

Value Chain of text up to 64 characters. It cannot
contain any blank spaces.

Example rigel.lsi.uned.es

 12

Java Virtual Machine Configuration
Information relative to the installation of the j2sdk

Java Home Path Explanation Directory in which the j2sdk1.4 is installed.
Value It should be a direct folder route within the

system.
Example C:\jdk1.4

Web Server Configuration
Information relative to the installation of Tomcat

Web Server Home Path Explanation Directory in which Tomcat is installed.

Value It should be a directory route which is valid
within the system.

Example C:\tomcat
Port Number Explanation Port number through which the Tomcat web

server flows.

Value It should be a numerical value that corresponds
to a valid port.

Example 4080

mySQL Database Manager Configuration
Data relative to the BD MySQL to permit the ADServer the connection with the BD in order to work
with the BDs of the results and log
Port Number Explanation Port number through which the database

mySQL will flow.
Value It should be a numerical value that corresponds

to a valid port number.
Example 3306

User
Explanation The valid user in the MySQL database that

needs permission to create databases and
connect with the existing one in order to

 13

consult, add and modify information.

Value Chain of text with a length of up to 16
characters. It cannot contain any blank spaces.

Example ycalero

Password

Explanation The last user’s password for connection to the
BD MySQL.

Value Chain of text with a length of up to 16
characters. It cannot contain blank spaces.

Example one_ex

IMPORTANT:

If you don’t have a user of this type, it must be signed up in the
database of MySQL; to do that, we can enter in the monitor of
BD and use the users’ administration tool. The user will be
user@hostname and should have permission to create and use
the databases (as a creator of databases and charts, to consult
and update or create indexes).

If we also want the AD to work when connecting from any
machine, we have to first sign up that user in order to be able to
connect from any machine (this operation requires permission
from the administrator):

INSERT INTO user (Host,User,Password)
VALUES('%','<user>',PASSWORD('<password>'));

GRANT INSERT,SELECT,UPDATE,DELETE ON *.* TO
ycalero;

Web Application Configuration

Context Name Explanation The name that is desired to give to the
context that is going to contain the Active
Document Server.

Value Chain of text with a length of up to 16
characters. It cannot contain blank spaces.

Example ADServer

 14

After filling in all fields (figure 5) click the button “Next”. At this moment the
program will check to see if the information entered is correct and if it is, it
proceeds to install the files that make up the ADServer.

Figure 5. (Setting up) Configuring the ADServer installation on our systems

If an error is detected in the information entered, for example if the directories
don’t exist, or the connection to the database couldn’t be carried out, an error
message will show indicating what the problem was and there will be a “Correct”
button which will allow you to go back to the previous window to correct it
(figure 6).

 15

Figure 6. Error during the ADServer installation

5. Installation of the files that make up the ADServer:

If everything is correct, carry out the installation, which means:

 Copy the files that make up the ADServer
 Copy the files that make up the MetadataEditor
 Copy the files that make up the AD “ExampleAD”
 Create the databases of the results (DBResults) and of the log (DBLog)

necessary for the functioning of the AD “ExampleAD”
 Create and update the configuration files

IMPORTANT: During the copying of the files you will be able to see what is
happening in the Tomcat console (figure 7), in it we can see which files are being
copied on to our machine.

 16

Figure 7. Tomcat console

If any errors occur during the installation, a red message will appear indicating the place
where it has occurred. In which case, since the installation hasn’t been finished, we will
have to see what produced it in the Tomcat console, try to solve it, uninstall the part of
the ADServerSetup that has been installed (as described in section 2.2.7 Un-installation
of the ADServer) and try again.

We know that the installation process has been carried out successfully if the following
message appears (figure 8):

“The process has finished successfully”

 17

Figure 8. ADServer installation finished succesfully

2.2.4 Updating after the changes
In order for the changes that were made to work, we have to re-start up Tomcat and
close the navigator windows.

If we look in the Tomcat directory, we will see that two new contexts have been added:
one belonging to the ADServer (it will have the name that was indicated in “Context
Name”; see Web Application Configuration, p.13) and one called “MetadataEditor”.

The ADServer is installed with a demonstration AD called “ADExample” so that the
user has an example to refer to when creating their own Active Documents.

If we consult the databases defined in our system, we will see that two new databases
have been created called “DBResult” and “DBLog” which are necessary for the AD to
work “ADExample”.

In the BD of results “DBResult” two users which are permitted to work with the AD are
created by defect “ADExample”:

To work in the role of student: Login=test Password=test

 18

To work in the role of teacher: Login=marker Password=marker

2.2.5 Possible errors produced during installation

If any error in the information entered during the process of installation is detected or if
any incoherence is detected, we might run into errors in the navigator window.
Depending on the error, they are classified into the following groups:

2.2.5.1 Connection errors with the ADServerSetup
 The page cannot be displayed: If when connecting to the web page that allows

us to enter the ADServer Setup we find a message like this, it means that Tomcat
isn’t active. The solution is to run Tomcat.

2.2.5.2 Format errors in the values entered by the user
 Error in [xxx]: The value is missing: No value was assigned to the installation

parameter called “xxx”. The solution is to assign a value to the parameter.
 Error in [xxx]: The value contains blanks: The value entered for the installation

parameter “xxx” contains blank spaces. The solution is to eliminate the blank
spaces that are in the value indicated in said parameter.
 Error in [xxx]: java.lang.NumberFormatException: This error means that the

entered value must be a number. The solution is to indicate a number as the
value.
 Error in [xxx]: [directory] Does not exists: The route indicated as a value for the

installation parameter “xxx” doesn’t exist, this means that the corresponding
application to said parameter is not installed in the place indicated by the user.
The solution is to check the installation route in the system and correct the value
indicating the correct route.
 Error in [xxx]: [directory] Is not a directory: The route entered as value for the

parameter of installation “xxx” is not a directory, which means the corresponding
application to that parameter is not installed in the place indicated by the user.
The solution is to check the installation route in the system and correct the value
indicating the correct route.

2.2.5.3 Context errors provoked by previous installations
 Error in Context Name: Context exists --> [contextPath]: The Context Name

chosen to install the ADServer already exists in Tomcat. This indicates that
there is a context in Tomcat with the same name, which could be due to a
previous installation of ADServer or that it coincides with another one that
Tomcat is using. If it is because of a prior installation, un-install the ADServer as
indicated in section 2.2.7 Un-installation of the ADServer, if not, indicate a
different name in the installation parameter “Context Name”.
 Error in MetadataEditor: metadataPath exists --> [metadataPath]: The context

denominated “MetadataEditor” already exists within Tomcat. This is because the

 19

ADServer has already been installed into the system; Re-start Apache. Un-install
the ADServer as indicated in the section 2.2.7 Un-installation of the ADServer.

2.2.5.4 Errors with the DB
 Error in [xxx]: The Database “[DB]” exists: The database indicated as a value

for the installation parameter “xxx” already exists. If it is because of the
databases that are used in the example AD called DBLog and DBResults, this
might be because the ADServer has already been installed into the system, un-in-
install the ADServer as indicated in section 2.2.7 Un-installation of the
ADServer. If it is a different DB, modify the value assigned to said installation
parameter.
 Error in connection DataBase: java.sql.SQLException: Cannot connect to

MySQL server on [hostname:mysql_port]. Is there a MySQL server running on
the machine/port you are trying to connect to? (java.net.ConnectException):
The system cannot connect to the database manager because it hasn’t been
started up or because the port is not valid. Check if the hostname and the port
number are valid and if the database is running in this host through this port; if
they aren’t, run the database.

 Error in connection DataBase: java.sql.SQLException: Invalid authorization

specification: Access denied for user: '[user]@[hostname]’ (Using password:
YES): This indicates that the user or the password to make the connection to the
DB are not valid or the user does not have permission to access the DB manager.
Check that the user name corresponds to the defined user in the database and that
the password is correct.

2.2.6 Configuration file
This file cannot be edited, rather it is generated during the installation of the ADServer
and each time a new AD is added, the corresponding part to the configuration is added to
the file. The configuration file fulfils the dtd called “Configuration.dtd”.

2.2.6.1 Elements for configuring the AD environment

AD
 <AD….>
Explanation The files defining the AD elements
XML
description

<!ELEMENT AD (URI_AD, URI_RL, URI_Community)>

Example
<AD>
 <URI_AD>c:\tomcat\webapps\ADServer\Conf\ADExample\AD.xml</URI_AD>
 <URI_RL>c:\tomcat\webapps\ADServer\Conf\ADExample\RL.xml</URI_RL>
 <URI_Community>c:\tomcat\webapps\ADServer\Conf\ADExample\CF.xml

 20

 </URI_Community>
</AD>

BinaryPathO
 <BinaryPathO …>
Explanation URI for the binary objects that are to be included in the objects DB
XML
description

<!ELEMENT BinaryPathO (#PCDATA)>

Example Not available

BinaryPathR
 <URI_RL …>
Explanation URI for the binary objects that are to be included in the results DB
XML
description

<!ELEMENT BinaryPathR (#PCDATA)>

Example
<BinaryPathR>c:\tomcat\webapps\ADServer\Conf\ADExample\bin\</BinaryPathR>

CatalinaHome
 <CatalinaHome…>
Explanation Location of the Tomcat software on the AD system host
XML
description

<!ELEMENT CatalinaHome (#PCDATA)>

Example <CatalinaHome>c:\tomcat</CatalinaHome>

CatalinaPort
 <CatalinaPort...>

Explanation The port open on the host machine of the AD system for connecting to the Tomcat Web Server and
Container

XML
description

<!ELEMENT CatalinaPort (#PCDATA)>

Example <CatalinaPort>4080</CatalinaPort>

Comment
 <Comment …>
Explanation An optional comment that would appear on the right hand side of the AD heading
XML
description

<!ELEMENT Comment (#PCDATA)>

Example
<Comment>Example</Comment>

Configuration
Element <Configuration…>
Explanation The root element of the AD configuration
XML
description

<!ELEMENT Configuration (ConfigurationSystem, GeneralConf, ConfigurationAD+)>

 21

Example See file configuration1.0.xml

ConfigurationAD
 <ConfigurationAD….>

Explanation
Parameters for the AD configuration: the AD files, the Results DB, the Objects DB, the AD system
logging configurarion, the XML results setup, the presentation parameters and the description and
variables for the tools used by this AD. The required parameter is the AD unique identifier

XML
description

<!ELEMENT ConfigurationAD (AD, DatabaseResult, DatabaseObject?, Log, ResultXML,
Presentation, Tools?)>
<!ATTLIST ConfigurationAD ADName ID #REQUIRED>

Example See the examples for the parts composing this one

ConfigurationSystem
 <ConfigurationSystem…>
Explanation The elements defining the software installation for supporting the AD system
XML
description

<!ELEMENT ConfigurationSystem (System, Tomcat, Mysql)>

Example

<ConfigurationSystem>
 <System>
 <OS>windows</OS>
 <Hostname>rigel.lsi.uned.es</Hostname>
 <JavaHome>c:\programas\jdk1.4</JavaHome>
 </System>
 <Tomcat>
 <CatalinaHome>c:\tomcat</CatalinaHome>
 <CatalinaPort>4080</CatalinaPort>
 </Tomcat>
 <Mysql>
 <jdbcDriver>org.gjt.mm.mysql.Driver</jdbcDriver>
 <mysqlPort>3306</mysqlPort>
 </Mysql>
</ConfigurationSystem>

ContextName
 <ContextName …>
Explanation The context according to Tomcat terminology. All the application is referred to that context
XML
description

<!ELEMENT ContextName (#PCDATA)>

Example <ContextName>ADServer</ContextName>

DataBaseLog
 <DataBaseLog …>
Explanation The configuration elements which are necessary for logging onto a DB
XML
description

<!ELEMENT DatabaseLog (DriverL, ServerL, NameL, UserL, PasswdL)>

Example
<DatabaseLog>
 <DriverL>org.gjt.mm.mysql.Driver</DriverL>
 <ServerL>jdbc:mysql://rigel.lsi.uned.es:3306</ServerL>
 <NameL>DBLog</NameL>

 22

 <UserL>ycalero</UserL>
 <PasswdL>prueba</PasswdL>
</DatabaseLog>

DatabaseObject
 <DatabaseObject …>
Explanation The database for storing external objects, which would need the AD
XML
description

<!ELEMENT DatabaseObject (DriverO, ServerO, NameO, UserO, PasswdO, BinaryPathO)>

Example Not available

DatabaseResult
 <URI_DatabaseResult…>

Explanation Parameters for setting up the AD results DB
XML
description

<!ELEMENT DatabaseResult (DriverR, ServerR, NameR, UserR, PasswdR, BinaryPathR)>

Example

<DatabaseResult>
 <DriverR>org.gjt.mm.mysql.Driver</DriverR>
 <ServerR>jdbc:mysql://rigel.lsi.uned.es:3306</ServerR>
 <NameR>DBResults</NameR>
 <UserR>ycalero</UserR>
 <PasswdR>prueba</PasswdR>
 <BinaryPathR>c:\tomcat\webapps\ADServer\Conf\ADExample\bin\</BinaryPathR>
</DatabaseResult>

DirResult
 <DirResult …>
Explanation The location (directory) of the XML results
XML
description

<!ELEMENT DirResult (#PCDATA)>

Example <DirResult>c:\tomcat\webapps\ADServer\Conf\ADExample\Results\</DirResult>

DriverO
 <DriverO …>
Explanation Driver for connecting to the objects DB
XML
description

<!ELEMENT DriverO (#PCDATA)>

Example Not available

DriverR
 <DriverR …>
Explanation JDBC driver for connecting to the results DB
XML
description

<!ELEMENT DriverR (#PCDATA)>

Example <DriverR>org.gjt.mm.mysql.Driver</DriverR>

GeneralConf

 23

 <GeneralConf…>
Explanation Common configuration elements shared by every AD defined within this AD system
XML
description

<!ELEMENT GeneralConf (ContextName, URI_ADServlet, URI_BaseApplet)>

Example

<GeneralConf>
 <ContextName>ADServer</ContextName>
 <URI_ADServlet>http://rigel.lsi.uned.es:4080/ADServer/servlet/ADServlet
 </URI_ADServlet>
 <URI_BaseApplet>http://rigel.lsi.uned.es:4080/ADServer/jsp/parser_jsp/Applets
 </URI_BaseApplet>
</GeneralConf>

Hostname
 <hostname...>
Explanation Fully qualified name (but not URL) of the AD system host machine
XML
description

<!ELEMENT Hostname (#PCDATA)>

Example <Hostname>rigel.lsi.uned.es</Hostname>

Icon
 <Icon …>
Explanation This icon will appear at the bottom of the displayed AD
XML
description

<!ELEMENT Icon (#PCDATA)>

Example
<Icon>http://rigel.lsi.uned.es:4080/ADServer/Conf/ADExample/Presentation/Divilab.j
pg</Icon>

JavaHome
 <JavaHome…>
Explanation The location of the Java Virtual Machine on the AD system host
XML
description

<!ELEMENT JavaHome (#PCDATA)>

Example <JavaHome>c:\programas\jdk1.4</JavaHome>

JdbcDriver
 <jdbcDriver…>
Explanation Fully qualified name of the Java DB Connection Driver for the MySQL DB
XML
description

<!ELEMENT jdbcDriver (#PCDATA)>

Example <jdbcDriver>org.gjt.mm.mysql.Driver</jdbcDriver>

Log
 <Log …>

Explanation
The configuration elements for the logging system. It consists of a DBLogging and a XMLLogging
elements
Attributes:

 24

 XML: recording or not in XML format
 DB: recording or not in DB format

XML
description

<!ELEMENT Log (DatabaseLog, LogXML)>
<!ATTLIST Log
 XML (yes | no) #REQUIRED
 DB (yes | no) #REQUIRED>

Example

<Log XML="no" DB="no">
 <DatabaseLog>
 <DriverL>org.gjt.mm.mysql.Driver</DriverL>
 <ServerL>jdbc:mysql://rigel.lsi.uned.es:3306</ServerL>
 <NameL>DBLog</NameL>
 <UserL>ycalero</UserL>
 <PasswdL>prueba</PasswdL>
 </DatabaseLog>
 <LogXML>
 <UriDTDLog>http://rigel.lsi.uned.es:4080/ADServer/Conf/AD_Log_v1.0.dtd
 </UriDTDLog>
 <PathLog>c:\tomcat\webapps\ADServer\Conf\ADExample\Log\log.xml</PathLog>
 </LogXML>
</Log>

LogXML
 <LogXML …>
Explanation The required setup for XML logging
XML
description

<!ELEMENT LogXML (UriDTDLog, PathLog)>

Example

<LogXML>
 <UriDTDLog>http://rigel.lsi.uned.es:4080/ADServer/Conf/AD_Log_v1.0.dtd
 </UriDTDLog>
 <PathLog>c:\tomcat\webapps\ADServer\Conf\ADExample\Log\log.xml</PathLog>
</LogXML>

Menu
 <Menu …>
Explanation There can be any number of menus (even none)
XML
description

<!ELEMENT Menu (MenuOption+)>

Example
<Menu>
 <MenuOption uri="http://www.uned.es" name="Uned"/>
</Menu>

MenuOption
 <MenuOption …>

Explanation

Each of the available options which would compose the current menu
Attributes:

- Name: the menu title
- URI: the URI to go when the user selects this option

XML
description

<!ELEMENT MenuOption EMPTY>
<!ATTLIST MenuOption

 25

 name CDATA #REQUIRED
 uri CDATA #REQUIRED>

Example <MenuOption uri="http://www.uned.es" name="Uned"/>

MySQL
 <Mysql…>
Explanation Elements necessary for configuring the MySQL DataBase application and server
XML
description

<!ELEMENT Mysql (jdbcDriver, mysqlPort)>

Example
<Mysql>
 <jdbcDriver>org.gjt.mm.mysql.Driver</jdbcDriver>
 <mysqlPort>3306</mysqlPort>
</Mysql>

MysqlPort
 <mysqlPort…>
Explanation Port open on the host machine of the AD system for connecting to the MySQL DB server
XML
description

<!ELEMENT mysqlPort (#PCDATA)>

Example <mysqlPort>3306</mysqlPort>

NameO
 <NameO …>
Explanation Name of the objects DB
XML
description

<!ELEMENT NameO (#PCDATA)>

Example Not available

NameR
 <NameR …>
Explanation Results DB name
XML
description

<!ELEMENT NameR (#PCDATA)>

Example <NameR>DBResults</NameR>

OS
 <os…>
Explanation The operating system running on the AD system host
XML
description

<!ELEMENT OS (#PCDATA)

Example <OS>windows</OS>

ParamConf
 <ParamConf …>

Explanation Any of the parameters to be supplied to the tool being defined
Attributes:

 26

 paramAD: AD internal parameter identifier after which will be valued the tool’s parameter
 paramTool: tool’s parameter to be valued after its AD counterpart

XML
description

<!ELEMENT ParamConf EMPTY>
<!ATTLIST ParamConf
 paramAD CDATA #REQUIRED
 paramTool CDATA #REQUIRED>

Example <ParamConf paramTool="marker" paramAD="login"/>

PasswdO
 <PasswdO …>
Explanation Password for the user identified by <userO> to connect to the objects DB
XML
description

<!ELEMENT PasswdO (#PCDATA)>

Example Not available

PasswdR
 <PasswdR …>

Explanation Password for the user defined as <UserR> to connect to the results DB
XML
description

<!ELEMENT PasswdR (#PCDATA)>

Example <PasswdR>prueba</PasswdR>

Editor
window

Not available

PathLog
 <PathLog…>
Explanation The logging file path
XML
description

<!ELEMENT PathLog (#PCDATA)>

Example
<PathLog>c:\tomcat\webapps\ADServer\Conf\ADExample\Log\log.xml</PathLog>

Presentation
 <Presentation …>

Explanation The elements necessary for customising the AD appearance (how it will be displayed)
XML

description
<!ELEMENT Presentation (Title, Comment, Icon, Style, Menu?)>

Example

<Presentation>
 <Title>Active Document</Title>
 <Comment>Example</Comment>

<Icon>http://rigel.lsi.uned.es:4080/ADServer/Conf/ADExample/Presentation/Divilab.j
pg
 </Icon>
<Style>http://rigel.lsi.uned.es:4080/ADServer/Conf/ADExample/Presentation/ActiveDo
cument.css</Style>
 <Menu>

 27

 <MenuOption uri="http://www.uned.es" name="Uned"/>
 </Menu>
</Presentation>

ResultXML
 <ResultXML …>
Explanation The elements necessary for setting up the XML results
XML
description

<!ELEMENT ResultXML (UriDTDResult, DirResult)>

Example

<ResultXML>
 <UriDTDResult>http://rigel.lsi.uned.es:4080/ADServer/Conf/AD_growable_v3.dtd
 </UriDTDResult>
 <DirResult>c:\tomcat\webapps\ADServer\Conf\ADExample\Results\</DirResult>
</ResultXML>

ServerO
 <ServerO …>
Explanation URL of the server for connecting to the objects DB
XML
description

<!ELEMENT ServerO (#PCDATA)>

Example Not available

ServerR
 <ServerR …>
Explanation URL for the server allowing the connection to the results DB
XML
description

<!ELEMENT ServerR (#PCDATA)>

Example <ServerR>jdbc:mysql://rigel.lsi.uned.es:3306</ServerR>

Style
 <Style …>
Explanation Style sheet to be applied to the AD presentation
XML
description

<!ELEMENT Style (#PCDATA)>

Example <Style>http://rigel.lsi.uned.es:4080/ADServer/Conf/ADExample/Presentation/ActiveDo
cument.css</Style>

System
 <system…>

Explanation The description of the basic system elements, i.e., operating system under which the AD system is to
be run, name of the AD system host and location of the Java VM

XML
description

<!ELEMENT System (OS, Hostname, JavaHome)>

Example
<System>
 <OS>windows</OS>
 <Hostname>rigel.lsi.uned.es</Hostname>
 <JavaHome>c:\programas\jdk1.4</JavaHome>

 28

</System>

Title
 <Title …>
Explanation This title will be shown on the AD heading
XML
description

<!ELEMENT Title (#PCDATA)>

Example <Title>Active Document</Title>

Tomcat
 <Tomcat…>

Explanation Elements necessary for configuring the Tomcat Web Server and Application Container (for further
information, see the Apache Jakarta Project at the URL: http://jakarta.apache.org/tomcat/)

XML
description

<!ELEMENT Tomcat (CatalinaHome, CatalinaPort)>

Example
<Tomcat>
 <CatalinaHome>c:\tomcat</CatalinaHome>
 <CatalinaPort>4080</CatalinaPort>
</Tomcat>

ToolConf
 <ToolConf …>

Explanation

Any of the tool configuration entries
Attributes:

- id: the tool’s unique identifier
- name: a name for the tool, other than its id

XML
description

<!ELEMENT ToolConf (ParamConf+)>
<!ATTLIST ToolConf
 id CDATA #REQUIRED
 name CDATA #IMPLIED>

Example

<ToolConf id="correction">
 <ParamConf paramTool="marker" paramAD="login"/>
 <ParamConf paramTool="student" paramAD="student"/>
 <ParamConf paramTool="labdoc" paramAD="labdoc"/>
 <ParamConf paramTool="experience" paramAD="experiment"/>
 <ParamConf paramTool="activity" paramAD="activity"/>
 <ParamConf paramTool="task" paramAD="taskStu"/>
 <ParamConf paramTool="host" paramAD="ServerDBR"/>
</ToolConf>

Tools
 <Tools …>

Explanation
This element is used for setting up the internal1 tools the AD would be using. These tools will be
needing AD values to work with. The connection for passing values to the tools and back will be made
through a servlet

XML <!ELEMENT Tools (ToolConf+)>

1 Internal tools refer to tools that can only be used with the AD System. Conversly, external tools are
standalone applications that have been configured to work with the AD System.

 29

description

Example

<Tools>
 <ToolConf id="DrawTool">
 … stuff cut for saving space
 see the following elements for details …
 </ToolConf>
 <ToolConf id="tooltest">
 … stuff cut for saving space
 see the following elements for details …
 </ToolConf>
 <ToolConf id="correction">
 … stuff cut for saving space
 see the following elements for details …
 </ToolConf>
</Tools>

URI_AD
 <URI_AD….>

Explanation URI for the AD definition file
XML
description

<!ELEMENT URI_AD (#PCDATA)>

Example <URI_AD>c:\tomcat\webapps\ADServer\Conf\ADExample\AD.xml</URI_AD>

URI_ADServlet
 <URI_ADServlet …>
Explanation Data base connection servlet. Every external tool will be connected through this servlet
XML
description

<!ELEMENT URI_ADServlet (#PCDATA)>

Example <URI_ADServlet>http://rigel.lsi.uned.es:4080/ADServer/servlet/ADServlet
</URI_ADServlet>

URI_BaseApplet
 <URI_BaseApplet>
Explanation URI for the applets that the AD will be using internally for its operation
XML
description

<!ELEMENT URI_BaseApplet (#PCDATA)>

Example <URI_BaseApplet>http://rigel.lsi.uned.es:4080/ADServer/jsp/parser_jsp/Applets
</URI_BaseApplet>

URI_Community
 <URI_Community …>
Explanation URI for the AD community definition file
XML
description

<!ELEMENT URI_Community (#PCDATA)>

Example <URI_Community>c:\tomcat\webapps\ADServer\Conf\ADExample\CF.xml</URI_Community>

URI_RL
 <URI_RL …>

 30

Explanation URI for the AD resource list file
XML
description

<!ELEMENT URI_RL (#PCDATA)>

Example <URI_RL>c:\tomcat\webapps\ADServer\Conf\ADExample\RL.xml</URI_RL>

UriDTDLog
 <UriDTDLog …>
Explanation The URI of the DTD for the log files
XML
description

<!ELEMENT UriDTDLog (#PCDATA)>

Example <UriDTDLog>http://rigel.lsi.uned.es:4080/ADServer/Conf/AD_Log_v1.0.dtd
</UriDTDLog>

UriDTDResult
 <UriDTDResult…>
Explanation The URI of the XML results DTD
XML
description

<!ELEMENT UriDTDResult (#PCDATA)>

Example <UriDTDResult>http://rigel.lsi.uned.es:4080/ADServer/Conf/AD_growable_v3.dtd
</UriDTDResult>

UserO
 <UserO …>
Explanation The user identifier for connecting to the objects DB.
XML
description

<!ELEMENT UserO (#PCDATA)>

Example Not available

UserR
 <UserR …>

Explanation
User identifier for connecting to the results DB. This user needs DB, table and indices creating,
selecting and updating permissions on the results DB, and such a user must exist for the proper
configuration and operation of the AD

XML
description

<!ELEMENT UserR (#PCDATA)>

Example <UserR>ycalero</UserR>

2.2.7 Un-installation of the ADServer
To un-install the system, you must follow these steps:
Within the webapps directory of Tomcat:

 Eliminate the following directories:
o ADServer (or the name that was entered as “Context Name”

 31

o MetadataEditor
 Within the directory ADServerSetup\WEB-INF edit the file called web.xml and

erase the following part :
 <context-param>
 <param-name>configFile</param-name>
 <param-value>c:\tomcat\webapps\ADServer\Conf\Configuration1.0.xml</param-value>
 <description>
 Complete file path to the configuration file de desarrollo
 </description>
 </context-param>
 Using a database manager, eliminate the databases used for the example AD that

includes the installation program, these are denominated: DBLog and DBResults.

Then close the navigator windows and re-start Apache.

Once all of this has been done, we can install the AD again, following the steps in
section 2.2.3 Running the installation program.

2.3 Installing the Task Manager

The installation process is composed of the following seven steps:

1) Unzip the distribution tm.zip in a folder.
2) Create a database for the task manager.

Ask your system administrator to create a database and ask him the following
information:

• the database java url to join the database : It should be something like :
jdbc:postgresql: //hostname:port/tm?charSet=LATIN1 for a database on
postgresql whose name is tm

• an admin login which has rights to create tables in the database
• the admin password
• a user login which is able to execute all the current sql statements on the database

(select, insert...)
• the user password

On your side, verify you have got the correct database jar file to connect on the database
and note the jdbc driver name. If you need to use another database jar file, please copy it
into the tm.0.4.1_00/tm/WEB-INF/lib folder and sets this information into the build
properties file.

3) Modify the build.properties file.

 32

If you want to create database tables with the tool provided by task manager,
please edit the build.properties file to set the following information:

• db.driver=The jdbc driver name
• db.url=the database java url
• db.login=The admin login
• db.password=the admin password
• driver.jar.name=the database jar file name
• db.filename which locates the file which stores the sql requirements

useful to build the tables in the database. It should be equals to
properties/postgresql.sql or properties/mysql.sql

In any case set the following information:

• catalina.home=the path to Tomcat home directory
4) Modify the web.xml file

Edit the web.xml file to set the following information :

• tmDbDriver : The jdbc drivername
• tmDbUrl : the database java url
• tmDbLogin : The user login
• tmDbPassword : the user password

5) Create the tables in the database

• Either open a window in the tm0.4.1_00 folder and run ant dbload to create the
tables in your database and verify that the last line written by the tool says that
there is no error

• Either execute the postgresql.sql or mysql file with the tool provided by the
database manager

6) Deploy the task manager application

Open a window in the tm0.4.1_00 folder and execute ant deploy

7) Run the Task manager

Start (or restart) Tomcat and then check that the Task Manager has been correctly
installed by connecting http://hostname:8080/tm/test.htm from a Web browser., (where
hostname:8080 represents the hostname and port of tomcat server). This page regroups a
set of sample commands useful to understand how the task manager interacts with a
client application.

 33

3 Installation of an AD client
3.1 System requirements

To connect with the ServerAD as a client, a PC with the following characteristics must
be available:

• Windows 98 / Me / 2000 / XP
• 64MB of memory minimum
• A screen resolution of 800x600 or 1024x768

We need to have a series of programs installed in our PC in order for it to work:

 Navigator:
o Microsoft Internet Explorer 5 or higher
o Netscape Navigator 6.2

 Java plugin: j2re_1_4_0
 SVG plugin : SVGView

3.2 Installing the program
In order for it to work, we must have a series of programs installed in our PC that if they
are not currently installed, they must be installed. Next, we will see the programs
necessary and the instructions to install them.

3.2.1 Navigator
In order to be able to use this system, you must have one of the following web
navigators installed:

• Microsoft Internet Explorer 5 or higher
• Netscape Navigator 6.2

You can check the version in the following way:

• On Microsoft Internet Explorer, in the help menu, click on “About Internet
Explorer”

• On Netscape Navigator, in the menu Help, click on “About Netscape”

If you do not have the version indicated above, it must be installed with the files
provided on this CDROM (version 6 of Microsoft Internet Explorer or version 6.2 of

 34

Netscape Navigator for Windows). The use of Microsoft Internet Explorer is
recommended.

To install Netscape Navigator 6, you have to open the folder Netscape 6.2 in the
CDROM, double click on the file N6SetupB and follow the directions.

To install Microsoft Internet Explorer, the folder Iexplorer6 must be opened in the
CDROM, double click on the file ie6setup and follow the directions.

3.2.2 Java plugin
After having installed the navigator, the Java plugin (program) that is found in the
CDROM, double click on the file j2re-1_4_0-win and follow the directions. In this
installation program you must select the Web navigators that you have installed in your
machine, as shown in figure 9.

Figure 9. Java plugin installation

3.2.3 SVG plugin
After installation, you must install the SVG plugin that is on the CDROM, double click
on the file SVGView and follow the directions.

3.3 Creation of a new AD

To create a new AD, we must open a navigator and connect to:
http://localhost:catalina_port/ADServerSetup

 35

To create a new AD we click on the button “NewAD” and a window will appear where
it asks for the necessary information to create a new AD (figure 10).

Figure 10. Creating a new AD

This information is divided into various sections that are described below:

mySQL Database Manager Configuration (Step 1)
Data relative to the DB MySQL to allow the ADServer the connection with the DB in order to be
able to work with the DB results and log

 36

User Explanation Valid user in the database MySQL which
allows the creation of databases and the
connection to an already existing one in order
to consult, add and modify information.

Value A Chain of text with a length of 16 characters.
It cannot contain blank spaces.

Example ycalero
Password Explanation Previous user password for connection to the

DB mySQL.
Value A Chain of text with a length of 16 characters.

It cannot contain blank spaces.
Example one_ex

Web Application Configuration General (Step 2)
Data relative to the new AD

Active Document Explanation Active Document identifier.
It cannot contain blank spaces.

Value A Chain of text with a length of 16 characters.
It cannot contain blank spaces.

Example ADNewExample

Web Application Configuration DataBases (Step 2)
Solicits the names of the resulting DB and log that will be created along with the AD. These DB are
necessary for the functioning of the AD.
DBResults Explanation The name of the database that is going to be

used in this AD to store the resulting tasks.

Value A Chain of text with a length of 16 characters.
It cannot contain blank spaces.

Example EX2R

 37

DBLog Explanation Name of the database that is going to be used
to store the access log in the database in the
case that the log is to be stored in the DB.

Value A Chain of text with a length of 16 characters.
It cannot contain blank spaces.

Example EX2L

Web Application Configuration Logging (Step 2)
Allows the user to define whether or not to store the log information relative to the use of the AD

Database Explanation Indicates if it is desired to store the AD
access log in the database.

Value The value can be yes or no.
Example no

XML Explanation Indicates if it is desired to store the
ADaccess log as a XML file.

Value The value can be yes or no.
Example no

Web Application Configuration Presentation (Step 2)
It permits defining the appearance that the AD will have (in order to better understand what each
solicited value refers to, see figure 86)
Title Explanation Title that appears at the head of the active

document.

Value Chain of text with a length of up to 64
characters.

Example Active Document
Comment Explanation Comment that appears on the right hand side

of the header of the active document.

Value Chain of text with a length of up to 64
characters.

Example Comment

 38

Icon Explanation Icon that appears in the lower part of the AD

Value Value by defect: ltcs.gif
It must be the name of a valid image file.
If the value by defect is modified, after
creating the new AD, the user must copy said
file in the directory:
catalinaHome/catalina_port/context_name/ad_
name/Presentation/

Example Divilab.jpg
Stylesheet Explanation Stylesheet that is applied to the AD

Value Value by defect: ActiveDocument.css
It must be the name of a valid style file.
If the value by defect has been modified, after
creating the new AD, the user must copy said
file in the directory:
catalinaHome/catalina_port/context_name/ad_
name/Presentation/

Example ActiveDocument.css
IMPORTANT After creating the new AD, the files that the Icon refers to and

the style that appear by defect can be found in the directory:

catalinaHome/catalina_port/context_name/ad_name/Presentatio
n/

If the values that are offered by defect are modified, when the
creation of the new AD is complete, the user will have to copy
the files in this directory.

Web Application Configuration Presentation Menu(Step 2)
There can be from 0 to n menus.
Name Explanation Title of the menu that appears in the AD

Value Chain of text with a length of up to 32
characters.

Example UNED

 39

URL Explanation URL that you will go to if you click on menu

Value It must be a valid URL. It cannot contain blank
spaces.

Example http://www.uned.es

Web Application Configuration Presentation Tools(Step 2)
There can be from 0 to n defined tools.
It is used to configure the AD’s internal tools that need values from the AD.
Identifier Explanation Tool identifier

Value Chain of text with a length of up to 64
characters. It cannot contain blank spaces.
It is the ID of a tool defined within the
resource folder.

Example DrawTool
IMPORTANT: This part is only necessary if internal tools are added to

the ad.
The AD that are created are installed by defect with the
following internal tools:

 Editor
 DrawTool
 Correction_Tool

Web Application Configuration Presentation Tools Parameters
An internal tool that needs internal AD values can have from 1 to n parameters.
This allows us to specify what parameter tool will have a value from the AD.
ActiveDocument
Parameter

Explanation Identifier of the internal AD parameter that will be used to give
value to the “Parameter Tool”

Value The parameters defined internally in the AD that can
ADServletURL, ADName, community; login; idResul, view,
login, labdoc, experiment, activity, task, result, idResul, members,
userno.

Example login
Parameter Tool Explanation Name of the parameter tool that will take the value of the internal

AD parameter specified in “ActiveDocument Parameter”

Value Chain of text with a length of up to 32 characters. It cannot

 40

contain blank spaces.
It must be the name of a parameter defined in said tool.

Example login
IMPORTANT: This part is only necessary if internal tools are added to the AD.

The ADs that are created are installed with the following internal tools:
 Editor
 DrawTool
 CorrectionTool

After filling in all fields (figure 11), click the button “Next”. At that time the program
will check if the information entered is correct and if it is, it will proceed with the
installation of the files that make up the new AD.

 41

Figure 11. Configuring a new AD

If any errors are detected in the information entered, such as the databases already
existing, the connection to the DB cannot be carried out, the AD identifier exists, etc,
you will see an error message indicating what the problem is and there will be button
that says “Correct” which will allow you to go back to the previous window to correct
the problem (figure 12).

 42

Figure 12. Error creating a new AD

If everything is correct, a new AD will be created which will consist of:

 Copying the files that make up the new AD
 Creating DB results and log necessary to work
 Creating and updating the configuration files.

If any errors occur during the creation of the new AD, a red error message will appear
indicating at which point the error was produced. In that case, since the new AD will not
be complete, we will have to find out what produced it in the Tomcat console, try to
solve it, un-install the part of the new AD that has been installed (as described in section
4.4 Eliminating an AD and try again.

We will know the installation process has been completed correctly when we see the
following message (figure 13).

“The process has finished successfully”

 43

Figure 13. New AD created succesfully

When an AD is created, by defect two users are registered that are allowed to work with
the AD (we can see them in the results database, under the table “users”):

To work in the role of a student:

Login: test
Password: test

To work in the role of a teacher:
Login: marker
Password: marker

If we need to allow the access to an AD to different users than these, all we have to do
is, using the manager BD of MySQL, connect to the results database that this AD is
working with and insert lines in the table “users” of the following type:

INSERT INTO users
VALUES("<id>","<login>","<password>","<name>","<type>","","","","");

Where:

 <id>: User identification number.
 <login>: User name used to access the system.
 <password>: Password used to access the system
 <name>: Full user name

 44

 <type>: User type

3.3.1 Errors when a new AD is created

When a new AD is created, apart from the errors indicated in section 2.2.5 Possible
errors produced during installation the following errors can also be produced:

 Error in Active Document Name: ADName exists -> [xxx]: The identifier
chosen for the new Active Document already exists in the ADServer. Choose a
different identifier.
 Error in some Menu Name: The value is missing: The title in some menu has

not been indicated. Indicate a name for the menu.
 Error in some Menu Url: The value is missing: The URL in some menu has not

been indicated. Indicate a URL for the menu.
 Error in some Menu Url: The value of [menuUri] contains blanks: The value

of the Uri indicated in [menuUri] has blank spaces. Eliminate the blank spaces
that are contained in the URL.
 Error in some Identifier: The value of Id is missing: The value of the tool

identifier has not been indicated. Identify a value for the tool identifier.
 Error in some Identifier: The value of Id Tool “[id]” contains blanks: The

value indicated as tool identifier has blank spaces. Eliminate the blank spaces
that are in the tool identifier.
 Error in some Identifier: The value of Id is not valid: The value indicated as

tool identifier is not valid. Change the value of this ID for one that is valid.
Error in some Parameter: The value of parameter in Id Tool [id] is missing:
The parameter value has not been indicated. Indicate the value for the parameter
of the AD.
 Error in some Identifier: Id Tool have not parameters: The tool parameters

have not been indicated. Indicate a value for the tool parameter.
 Error in some Parameter: The value of parameter AD [ParamAD] contains

blanks: The value indicated as AD parameter contains blank spaces. Eliminate
the blank spaces contained in the AD parameter.
 Error in some Parameter: The value of parameter Tool [ParamT] contains

blanks: The value indicated as parameter tool has blank spaces. Eliminate the
blank spaces that are contained in the parameter tool.

3.4 Description of the AD XML files
The concept of an AD includes the following aspects of the learning design process: a
description of the activities, a description of the communities, the resources available,
and the outcome of the work undertaken within the environment. The ADs are specified
in XML and are defined by four pairs of document type definitions (or DTDs) and their

 45

corresponding XML document. The ADs are: (1) the description of the division of
labour in the tasks and subtasks (referred to as the ‘Description AD’). (2) The actors and
roles involved in the collaborative tasks (referred to as the ‘Community AD’); (3)
Definition of the resources for carrying out the tasks and (4) the outcome of the activity
(referred to as the ‘Outcome AD’). The Description AD, along with the specification of
the actors that perform the collaborative activities (specified in the Community AD) are
interpreted by the AD architecture that dynamically creates the appropriate user
interface, according to the elements defined in the two XML structures. As the learning
activity proceeds, the outcome produced by each student is represented in XML in the
Outcome AD which stores the results of the learning process and the task structure
described in the Description AD. These ADs are described next.

• The Description AD

The ‘Description AD’ specifies a collection of activities, each of which reflect the
components of an activity as described by Activity Theory, modelling the division of
labour and the mediating tools associated with each task. Activities can be grouped
within this AD, to provide (optional) sequencing and prerequisite dependences between
groups of activities. The definition of an activity includes the following: (a) The
description of the object of the activity. (b)The specification of the tasks and subtasks,
and for each one (if applicable) the different roles that the participants involved in the
task can play and (c) the instances (with the input/output data references) of tools and
resources available for each role related to a task.

• The Community Definition

These components are also expressed in XML in a similar way as an activity. The
Community AD represents the activity organization in order to describe the assignment
of roles for a specific task to the members of a given community. For each activity, a
description of the community involved is provided. As has been previously stated, this
description is processed by the AD architecture in combination with the Description AD
in order to relate the appropriate tasks and tools to the corresponding members of the
community. The use of a separate XML structure for the community gives rise to two
interesting mechanisms: firstly, communities can change during the development of the
activity, thus allowing dynamic role assignments to be made (amongst other
possibilities); and secondly, different Community AD can be combined with the same
Description AD, providing a flexible mechanism for the re-use of the same division of
labour description for a set of different working groups.

Note that in the context of DiViLab, this file is automatically generated by the Archimed
LMS, as will be detailed in deliverable D7.7.

 46

• The resource definition

The Description AD specifies the resources that are used in a scenario. The resources
can range from simple textual documents to fully distributed applications. Tools can be
invoked locally or remotely, and can be used synchronously and asynchronously. The
resource definition specifies the way in which an instantiation of a resource handles its
inputs and outputs in a form that is both coherent in the context of the overall AD system
and transparent to the user. This transparency is a first step toward functional
interoperability.

• The outcome Definition

The Outcome AD specifies the way in which the results of the tasks performed in the
environment are stored, thus providing an active component, a vision of the current work
completed and in-progress. Thus, the Outcome AD is in fact the real active component
of the AD organization, i.e., it is the result of the work generated by a specific actor
involved in the activity described by the Description AD. This representation provides a
definition, at the desired level of detail, of the work and the objects generated during the
learning process. The Outcome AD, rather than a sequence of plain text can contain
complex elements like graphics, tables, structured dialogs, maps, etc., in an XML format
embedded into it, with links to non XML objects outside, e.g., a MS Word document.
Furthermore, the AD architecture makes this structured collection of heterogeneous
objects persistent during the life cycle of the user within the environment, providing
tools for their manipulation, storage and retrieval. This mechanism forms the basis for
passing objects between tools in a transparent way for the user. Some interesting
applications can be considered due to the nature of the Outcome AD representation. In
the case of an experiment, it could for example, facilitate the creation of a report by the
simple selection and copying of the relevant embedded objects once the experiment has
terminated. The organization of the Outcome AD reproduces the structure of the
Description AD in terms of the structure of activities and tasks, but differs from it in the
sense of having an outcome tag for each of the performed tasks. Furthermore, there is
an outcome AD XML structure for each actor involved in the activities described above.

4 Using and Configuring the AD system

The details presented in this section currently present the way the AD system would be
used independently of the LMS system included in DiViLab. This affects the way that a
community AD would be specified (as detailed in section 4.1 Working in the system as a
learning scenario designer), and will be updated in deliverable D7.7.

Run Tomcat and the database MySQL.

Open a navigator and connect to:

 47

 http://hostname:catalina_port/ADServerSetup

A window will show up that will allow us to create new ADs, as well as work with those
already existing (figure 14).

Figure 14. Accessing the ADServer

A user can interact with the The Active Document Server in three ways, as a scenario
designer, as a student who is going to undertake the experiment, or as a teacher who is
going to vigilate the students progress (using the Monitor) or correct the produced work.
In the following three sections these three views of the system will be presented.

4.1 Working in the system as a learning scenario designer
After creating a new AD we can see that the structure is practically empty, it is only a
template that we must modify to adapt it to our needs and to be able to obtain the AD
that we really need.

To edit the AD that we have just created, we open a navigator and connect to:
http://localhost:catalina_port/ADServerSetup

In the section “Edit AD (Editing the Files)” we select the AD that we want to edit and
click on the button “Work as designer”, and then the “MetadataEditor” is opened and it
allows us to edit the files that make up the selected AD (figure 15).

 48

Figure 15. Choosing the AD to edit

To create and modify the prior XML documents, a metadata editor is provided. It assists
in the process of defining learning environment and its associated resources in terms of
ADs. Particularly definitions of activities, experiments, task, roles, and assignments of
responsibilities to roles can be undertaken with this tool. This editor is divided into two
frames:

The left frame offers a tree representation of the hierarchical structure of the XML
document being edited. The frame on the right shows the node selected in said tree
where 6 elements appear.

- The tool bar. This bar allows modifications on the structure of the XML document.
- The table of attributes. Through this table you can access the attributes of the node

in course to edit and modify the value.
- The table of contents (entitled “Content Information”). The table of contents

reference to all child nodes of the node that is being edited. This is how to navigate
through the alternative XML document the tree hierarchy.

- The table of sibling nodes (entitled “See also”). This table shows the relationship of
all the sibling nodes of the selected node. As before, its mission is to offer an
alternative to navigation.

 49

- The area of content editing. This area of text permits editing the content of the node
that is terminal.

Out of the prior elements, it is worth highlighting the operations that the toolbar allows
you to carry out to change the hierarchical structure of the document. These operations
affect the nodes of the XML document. More specifically, it can:

- Create a child node
- Create a sibling node
- Clone a sub tree from a node
- Change the name of a node
- Erase a node

When selecting a node attribute, the frame on the right offers an area of text where you
can edit and modify the content of the attribute as well as a toolbar with two possible
actions referring to said node:

- Create a new attribute
- Erase the attribute that is being edited

With these elements, the editor can offer the designer the possibility to create and
modify any structure of documents desired. But in order for the changes to be effective,
the changes that have taken place must be saved. In order to do so, the upper frame of
the editor has a button “Save XML” which allows you to save the changes remotely.

This editor does not check if the edited documents fulfil the DTD, it is very important
for all files that compose the AD to be validated so they fulfil the DTDs from which they
are based. If not, the AD will not work.

 50

Figure 16. Selecting the AD File

When entering the design mode in the education environment, the web editor opens. As
you can see in figure 16, first you can choose the document of configuration that you
desire to edit. In this case, we select the entrance AD.xml.

Figure 17. Adding roles to a new role list (list-roles)

Once the hierarchical tree corresponding to the AD.XML document is scrolled out and
one of its nodes has been selected, the editor looks similar to figure 17. In this specific
case, the node list_nodes is being edited. As can be seen in the toolbar, we are offered

 51

the possibility to create new child and sibling nodes, erase the current node (list_nodes),
rename it, or add a new attribute to it. The editor also offers the relationship of the node
attributes (in this case only ID) and the relationship of child nodes (4 nodes role). If we
select the attribute ID, a screen shows up where we can edit the value of said attribute.

In this screen we can see two buttons in the upper right corner of the right hand frame.
One of them allows us to create a new attribute. The other one erases the attribute that is
being edited. There is also an area of text where you can update the value of the
attribute just by clicking on the button “Update”.

Figure 18. Editing the role list identifier (id)

Also, when we select one of the role nodes (figure 18) we go on to edit that node as
shown in figure 19. As you can see in this case it is also possible to edit the content of
the node as long as it is a leaf element within the hierarchy of the document.

 52

Figure 19. Editing a new role (student)

Before finishing the editing of the document, you must save the changes made. In order
to do so, click on the button “Save XML” which can be found in the upper left side of
the screen. This makes a window come up where all you need to do is click on the
button OK.

4.1.1 The XML files which are used to define a scenario with the

AD

An active document is made up of three XML files and one part of configuration:

 The actual active document
 The resource file
 The communities file
 The part of configuration that is stored in the XML file that contains the

configuration of the ADServer.
The part of configuration and the three XML files are generated in the moment that the
AD is created.

The three XML files that make up the AD are generated almost empty when a new AD
is created, so the user must personalize them in order to adapt them to the desired AD.

These four files are related amongst themselves in the following manner:

 The AD uses references to resources that are found defined in the RL
 The RL defines tools that, in some cases, need variables from the AD, and in that

case the can also be found defined in the configuration file.

 53

 The CF makes references to experiments, activities, and tasks defined within the
AD.

4.1.1.1 Tool types
A special distinction needs to be made about the types of tools that can be used in an
AD, and as such we can distinguish between:

 General purpose
 Associated to tasks

These can also be:

 Local
 Remote

Furthermore, the above distinctions can be seen to be either internal (which refer to tools
that can only be used with the AD System) or external (standalone applications that have
been configured to work with the AD System). There is a series of local tools that are
from the ADServer, that are defined within the XML files that make up the AD at the
time of its creation and can be used there if desired. These are:

 editor: It allows you to carry out tasks that have written text answers. When you
click on the button “Save”, it saves the answer in the results DB.
 tooltest: It allows you to carry out, answer and correct tasks that have multiple-

choice type answers. When you click on the button “Save”, it stores the answer
in the results DB.
 DrawTool: It allows you to carry out tasks that have drawn answers. When you

click on the button “Save”, it stores the answer in the results DB.
 correction: It is a correction tool that allows the tutor to comment and qualify a

task carried out by a student. When you click on “Save”, it stores the correction
in the results DB.

4.1.2 The DescriptionAD

4.1.2.1 AD elements

The DescriptionAD is made up of the following elements:

Active_doc_template
Element <active_doc_template….>

Explanation

Element: An Active Document is composed of a variety of Laboratory
Documents. Actually, a labdoc is an active document itself, but it can be
considered to have a variety of labs to be carried out over the same active
document. An active_doc_template bears also some metadata concerning the

 54

AD.
XML description <!ELEMENT active_doc_template (metadata, labdoc)>

Example

<active_doc_template>
 <metadata>This is the metainformation</metadata>
 <labdoc id=”labdoc01”>
 … stuff cut for saving space
 see the following elements for details …
 </labdoc>
</active_doc_template>

Activity
Element <activity….>

Explanation

Element: Performing an experiment implies carrying out a number of
activities
Attributes:

o id: the unique identifier of this activity
o name: the activity’s name
o prerrequisite: a reference to a prerequisite (a task which has to

be carried out before starting this activity)

XML description

<!ELEMENT activity (#PCDATA | resource_ref | content_ref |
taskbyrole | formatted_content | tip | object)*>
<!ATTLIST activity
 id ID #REQUIRED
 name CDATA #REQUIRED
 prerrequisite NMTOKEN #IMPLIED>

Example

<activity id="activity_002" name="Activity 2"
prerrequisite="pre2">
 Description for Activity 2
 … stuff cut for saving space
 see the following elements for details …
</activity>

Editor window See figures 29 to 32

Aim
Element <aim….>

Explanation
Element: the Aim defines the objective of the experiment
Attributes:

o label: the aim’s identifier

XML description
<!ELEMENT aim (#PCDATA | resource_ref | content_ref | object |
formatted_content | tip)*>
<!ATTLIST aim
 label CDATA #IMPLIED>

Example <aim label="Aim"> Aim </aim>
Editor window See figure 24

Bd_object
Element <bd_object….>

 55

Explanation

Element: a reference to a Data Base object
Attributes:

o id: the unique identifier of this bd_object (reference)
o domain: the object’s category (as an object)
o name: the referred object’s identifier
o category: the referred object’s category
o atr-label: the referred object’s name
o atr-content: the object’s content
o track: track the element’s usage. No teacking by default
o faq: include this element in a FAQ. No inclusion by default.

XML description

<!ELEMENT bd_object (#PCDATA)>
<!ATTLIST bd_object
 id ID #REQUIRED
 domain NMTOKEN #REQUIRED
 name NMTOKEN #REQUIRED
 category NMTOKEN #REQUIRED
 atr-label NMTOKEN #REQUIRED
 atr-content NMTOKEN #REQUIRED
 track (yes | no) #IMPLIED
 faq (yes | no) #IMPLIED>

Example
<bd_object atr-content="Content" atr-label="Name"
 category="Concept" domain="conceptual" id="obj4054"
 name="d031">tubo capilar
</bd_object>

Bd_relation
Element <bd_relation….>

Explanation

Element: A reference to a DB relation
Attributes:

o id: the unique identifier of this bd_relation reference
o domain: the referred relation’s domain
o antecedent: the referred relation’s antecedent
o track: tracking (yes ot no). By default, there is no tracking
o attrib: relation attribute
o category: a domain category

XML description

<!ELEMENT bd_relation (#PCDATA)>
<!ATTLIST bd_relation
 id ID #REQUIRED
 name NMTOKEN #REQUIRED
 domain NMTOKEN #REQUIRED
 antecedent NMTOKEN #REQUIRED
 track (yes | no) #IMPLIED
 attrib CDATA #IMPLIED
 category NMTOKEN #IMPLIED>

Example
<bd_relation id="rel200" name="belongs_to" domain="Conceptual"
 antecedent="gf_04" category="Compound">halógenos
</bd_relation>

 Content_ref

 56

Element <content_ref….>

Explanation Element: Content_ref is a reference to an external element. This kind of
content must be obtained as a result of a binding process or a DB access

XML description <!ELEMENT content_ref (bd_object | bd_relation | glosary)>

Example

<content_ref>
 <glosary atr-content="Content" atr-label="Name"
category="Concept" domain="Conceptual" id="glosary000284"
order="alphabet">Glosario de Conceptos</glosary>
</content_ref>

Experiment
Element <experiment….>

Explanation

Element: Experiments are composed by:
 - The list of resources of the learning environment
 -A structure model to include content and activities
Attributes:

- name: the name of this activity, an identifier?
- title:
- prerequisite: An experiment may have as a prerrequisite another
experiment
-prerequisite_type: either ‘delivered’, meaning that the experiment
has been given to the students? Or ‘assessed’, meaning that it’s been
evaluated

XML description

<!ELEMENT experiment (aim?, theoretical_component?,
safety_guides?, activity+)>
<!ATTLIST experiment
 name ID #REQUIRED
 title CDATA #REQUIRED
 prerrequisite IDREF #IMPLIED
 prerrequisite_type (assessed | delivered) #IMPLIED>

Example

<experiment name="exp_1" title="Experiment 1"
prerequisite="pre1">
 <aim label="Aim"> Aim </aim>
 <theoretical_component label="Theorical Component">
 Theorical Component
 </theoretical_component>
 <safety_guides label="Safety Guides">
 Safety Guides
 </safety_guides>
 <activity id="activity_001" name="Activity 1"
prerequisite="pre1">
 … stuff cut for saving space
 see the following elements for details …
 </activity>
</experiment>

Editor window See figures 21 to 28

Glossary

 57

Element <glossary….>

Explanation

Element: An external glossary defining terms and concepts from the
experiment’s domain
Attributes:

o id: the unique identifier of this glossary’s element
o category: the glossary’s element’s category (within the

glossary’s domain)
o domain: the kind of object which this glossary entry is

defining
o atr-label: the glossary’s element name
o atr-content: the glossary’s element content
o track: whether to track the use of this element. No tracking by

default
o order: the terms sorting order, either alphabetical or in the

input sequence

XML description

<!ELEMENT glosary (#PCDATA | reference)*>
<!ATTLIST glosary
 id ID #REQUIRED
 category NMTOKEN #REQUIRED
 domain NMTOKEN #REQUIRED
 atr-label NMTOKEN #REQUIRED
 atr-content NMTOKEN #REQUIRED
 track (yes | no) #IMPLIED
 order (alphabet | sequence) #IMPLIED>

Example

<glosary atr-content="Name" atr-label="Name"
 category="FunctionalGroup" domain="Conceptual"
 id="glosary008029" order="alphabet">glosarios por Grupo
 Funcional
 <reference atr-content="Name" category="Compound"
 domain="Conceptual" id="glosary080030" name="belongs_to"
 position="consecuent">Nombre de los compuestos
 pertenecientes a este grupo funcional
 </reference>
 <reference atr-content="Content" category="TableIR"
 domain="Conceptual" id="glosary008031" name="belongs_to"
 position="antecedent">Frecuencias de
 absorción de los compuestos pertenecientes a este grupo
 functional
 </reference>
</glosary>

Labdoc
Element <labdoc….>

Explanation
Element: A laboratory document defines one or more experiments.
Attributes:
 - id: the document unique identifier

XML description
<!ELEMENT labdoc (list_roles*, list_prerrequisites*,
experiment+)>
<!ATTLIST labdoc

 58

 id ID #REQUIRED>

Example

<labdoc id=”labdoc01”>
<list_roles id=”RoleList1”>
 … stuff cut for saving space
 see the following elements for details …
</list_roles>
<experiment name=”exp_1” title=”Experiment 1”>
 … stuff cut for saving space
 see the following elements for details …
</experiment>
</labdoc>

List_ prerequisites
Element <list_prerequisites…>

Explanation

Element: list_prerequisites is the set of conditions that must be held before a
task can be started.
Attributes:
 - id: the list identifier

XML description
<!ELEMENT list_prerrequisites (prerrequisite+)>
<!ATTLIST list_prerrequisites
 id ID #REQUIRED>

Example

<list_prerrequisites id=”listaPre1”>
 <prerrequisite id=”pre1” date_in=”2003-6-16”
date_out=”2003-6-23”/>
 <prerrequisite id=”pre2” ref=”activity_001”
type=”passed”/>
</list_prerrequisites>

Editor window See figures 37 to 39

List_roles
Element <list_roles….>

Explanation

Element: the set of roles taking part in the experiments within that particular
labdoc. Later on, these roles will be bound to taskbyrole elements.
Attributes:

o id: the list identifier

XML description
<!ELEMENT list_roles (role+)>
<!ATTLIST list_roles
 id ID #REQUIRED>

Example

<list_roles id=”RoleList1”>
 <role id=”student”/>
 <role id=”teacher”/>
 <role id=”guest”/>
 <role id=”marker”/>
</list_roles>

Editor window See figures 17 and 18

Mediating_tools
Element <mediating_tools….>

Explanation Element: list of references to the helping tools used for the different tasks

 59

XML description <!ELEMENT mediating_tools (resource_ref+)>

Example

<mediating_tools>
 <resource_ref display="insite" height="500" id="ref666"
id_ref="correction_tool" label="" width="300">
 <parameter>
 <param name="just" value="Right#Average#Wrong"/>
 <param name="values" value="10#5#0"/>
 </parameter>
 </resource_ref>
</mediating_tools>

Editor window See figure 46

Metadata
Element <metadata….>

Explanation Element: Representation of Metadata can use XML LOM binding from IEEE
LTSC or any other. Also DC has an XML binding

XML description <!ELEMENT metadata (#PCDATA)>
Example <metadata>This is the metainformation</metadata>

Object
Element <object….>

Explanation

Element: Definition of the generic content:
 - Objects
 - References to objects or content
Attributes:

o id: the identifier of the object??
o label: to show whenever the user moves the pointer over the

object’s link or when it is displayed on another window, as
the window’s title

o format: in which the object has been typeset
o display: whether it is to be displayed in the current or another

window

XML description

<!ELEMENT object (table | map | graphic)>
<!ATTLIST object
 id ID #IMPLIED
 label CDATA #REQUIRED
 format (latex | HTML | smiles) #IMPLIED
 display (insite | otherWindow) #REQUIRED>

Example

<object display="insite" label="Solubilidad">
 <graphic height="150"
 uri="http://rigel.lsi.uned.es:4080/ad1_des/
 jsp/parser_jsp/images/ADQuimica/solubilidad.jpg"
 width="400"/>
</object>

Param
Element <param….>

 60

Explanation

Element: A param is an attribute-value pair which can be passed as a
parameter to a resource which needs it
Attributes:

o name: the attribute’s name
o value: the optional value for initialising the attribute

XML description
<!ATTLIST param
 name CDATA #REQUIRED
 value CDATA #IMPLIED>

Example <param name="text" value="Comments"/>
Editor window See figures 53 and 54

Parameter
Element <parameter….>

Explanation Element: It’s a list (could be empty) of params (attribute-value pairs)
XML description <!ELEMENT parameter (param*)>

Example
<parameter>
 <param name="text" value="Comments"/>
</parameter>

Editor window See figures 51 and 52

Prerequisite
Element <prerequisite….>

Explanation

Element: a prerequisite is a condition which must be held before a task can
start
Attributes:

o id: the prerequisite identifier
o ref: a reference to an experiment or activity
o type: the task’s status, either ‘correct’, ‘done’ or ‘passed’
o date_in: starting date
o date_out: finishing date

XML description

<!ELEMENT prerrequisite EMPTY>
<!ATTLIST prerrequisite
 id ID #REQUIRED
 ref IDREF #IMPLIED
 type (correct | done | passed) #IMPLIED
 date_in CDATA #IMPLIED
 date_out CDATA #IMPLIED>

Example <prerrequisite id="pre1" date_in="2003-6-16" date_out="2003-6-23"/>

Editor window See figures 40 to 45

Reference
Element <reference….>

Explanation
Element: a reference to an external element, a relation to an external source
Attributes:

o id: the unique identifier of this reference

 61

o name: the reference’s name as a relation
o domain: the domain to which the relation is established
o category: a category within the previous domain
o atr_content: the reference content’s name
o position: either antecedent or consequent

XML description

<!ELEMENT reference (#PCDATA)>
<!ATTLIST reference
 id ID #IMPLIED
 name NMTOKEN #REQUIRED
 domain NMTOKEN #REQUIRED
 category NMTOKEN #IMPLIED
 atr-content NMTOKEN #REQUIRED
 position (antecedent | consecuent) #IMPLIED>

Example

<reference atr-content="Content" category="TableIR"
 domain="Conceptual" id="glosary008031" name="belongs_to"
 position="antecedent">Frecuencias de
 absorción de los compuestos pertenecientes a este grupo
 functional
 </reference>

Resource_ref
Element <resource_ref….>

Explanation

Element: A reference to a resource defined in the resources file
(resources.xml)
Attributes:

o id: the unique identifier of this resource_ref
o Id_ref: the referred resource’s name
o label: a text to display when the resource is used
o width: the resource is to be displayed in a rectangle this width
o height: the resource is to be displayed in a rectangle this

height
o display: whether it is to be displayed in the current or another

window

XML description

<!ELEMENT resource_ref (parameter?)>
<!ATTLIST resource_ref
 id ID #REQUIRED
 id_ref CDATA #REQUIRED
 label CDATA #IMPLIED
 width CDATA #IMPLIED
 height CDATA #IMPLIED
 display (insite | otherWindow) #REQUIRED>

Example

<resource_ref display="insite" height="500" id="ref667"
 id_ref="correction_tool" label="Elige la opcion"
width="300">
 <parameter>
 <param name="just" value="Right#Average#Wrong"/>
 <param name="values" value="10#5#0"/>
 </parameter>
</resource_ref>

 62

Editor window See figures 47 to 50

Role
Element <role….>

Explanation

Element: each of the parts that can be taken while using the labdoc, i.e.,
while carrying out experiments
Attributes:

o id: the role’s identifier

XML description
<!ELEMENT role EMPTY>
<!ATTLIST role
 id ID #REQUIRED>

Example <role id=”student”/>
Editor window See figure 19

Safety_guides
Element <safety_guides….>

Explanation

Element: it describes the safety rules or considerations to take into account
while performing this experiment
Attributes:

- label: the element’s identifier

XML description
<!ELEMENT safety_guides (#PCDATA | resource_ref | content_ref
| object | formatted_content | tip)*>
<!ATTLIST safety_guides
 label CDATA #IMPLIED>

Example
<safety_guides label="Safety Guides">
 Safety Guides
</safety_guides>

Editor window See figure 28

Taskbyrole
Element <taskbyrole….>

Explanation

Element: This element defines, for each task, the roles which can perform
them
Attributes:

o id: the unique identifier of this taskbyrole
o name: the task name
o description: the task’s description
o prerrequisite: a reference to the task prerequisite (another task

which has to be done before this one)
o roles: a set of roles which can be involved in this task
o markerTask: a reference to the marking task for this one if it

is needed

XML description
<!ELEMENT taskbyrole (#PCDATA | resource_ref | content_ref |
mediating_tools | formatted_content | tip)*>
<!ATTLIST taskbyrole
 id ID #REQUIRED

 63

 name CDATA #REQUIRED
 description CDATA #IMPLIED
 prerrequisite IDREFS #IMPLIED
 roles IDREFS #REQUIRED
 markerTask IDREF #IMPLIED>

Example

<taskbyrole id="taskdef021" name="Task 1" roles="student
teacher" markerTask="taskdef021_m">
 What is a Flow Diagram? Draw one and comment it.
 <mediating_tools>
 <resource_ref id="EditorMAref1" id_ref="Drawtool"
display="insite" label="Draw Editor" height="300"
width="300"/>
 <resource_ref id="ref7" id_ref="FormularioEditor"
display="insite" label="Text Editor">
 <parameter>
 <param name="text" value="Comments"/>
 </parameter>
 </resource_ref>
 </mediating_tools>
</taskbyrole>

Editor window See figures 33 to 36 as well as 55 to 57

Theoretical_component
Element <theoretical_component….>

Explanation

Element: the theoretical component is the necessary domain knowledge for
the experiment, its background
Attributes:

- label: the element’s identifier

XML description

<!ELEMENT theoretical_component (#PCDATA | resource_ref |
content_ref | object | formatted_content | tip)*>
<!ATTLIST theoretical_component
 label CDATA #IMPLIED>
<!-- Agosto 2001 añadi tool_ref al theoretical_component. Beti
… No aparece aquí … -->

Example
<theoretical_component label="Theoretical Component">
 Theoretical Component
</theoretical_component>

Editor window See figure 28

Tip
Element <tip….>

Explanation Element: A tip is a link in the AD that leads the user to an explanation
more in depth of a detail

XML description <!ELEMENT tip (#PCDATA | tip_content)*>

Example
<tip>velocidad de disolución
<tip_content id="q123">Es la velocidad a la que la sustancia
se disuelve </tip_content>
</tip>

Tip_content

 64

Element <tip_content….>

Explanation

Element: The actual content of a tip, either a text, a content_ref, an object or
a formatted_content
Attributes:

o id: the unique identifier of this content

XML description
<!ELEMENT tip_content (#PCDATA | content_ref | object |
formatted_content)*>
<!ATTLIST tip_content
 id ID #REQUIRED>

Example

<tip_content id="tip0000012">
hidroxilo (-OH)
carboxilo (-COOH)
amino (-NH2)
éter (-O-)
</tip_content>

General notice: hyphens are not admitted within the value of the identifiers

4.1.2.2 Editing the AD-definition XML file
When editing the file AD.xml using the MetadataEditor it is very important to fulfil the
dtd called “AD_ActiveDoc_v7.dtd” because if it is not fulfilled, the AD will not work.

Figure 20. Editing the AD Files

When entering the design mode of the educational environment, the metadata editor
described previously is opened. In the first place you can choose the configuration

 65

document that you would like to edit. In this case we must select the first link
corresponding to the document AD.xml that we want to edit (figure 20). Throughout the
next lines we will describe the configuration actions that are most common and can be
done on the document.

Inserting a new experiment

The first configuration task in the environment is the configuration of a new experiment.
As shown in the active document that appears by defect already has an experiment
(figure 21).

We must replicate the structure. In order to do so, the fastest option is to go over to the
node “experiment” and click on the button “Clone Node”. As a result, a new experiment
identical to the previous one is created. Then the nodes of the experiment can be edited
and correctly configured.

However, we will detail step by step the creation of a new experiment. In order to do so,
the following steps must be followed:

1. Go on the labdoc node

Figure 21. Selecting a labdoc node

2. Click the button New Child of the button on the right. A text square will show up
asking for the name of the new node (figure 22). Type in the word “experiment”.

 66

Figure 22. creating a new experiment node

3. Click on the button Accept. As a result, a new node terminal will be generated of the
type “experiment”. Go to this new node and repeat step two to create three child nodes.
These nodes correspond to the terminal elements “aim”, “theoretical_components” and
“safety_guides”. As you can see, a sub structure similar to the proceeding experiment
has been created(figure 23).

Figure 23. Structure for a new experiment

4. Now select each one of these child nodes and assign them a value that according to its
meaning. For example, to specify the objectives of the experiment, click on “aim” in the

 67

link in the table in the right hand frame or in the tree on the left hand side and specify a
value in the text area (figure 24). To accept, click the button “Accept”.

Figure 24. Filling in the content for the aim attribute

5. Select the other two nodes of the experiment and repeat the process described in step
4, when finished, we will have the one that appears in figure 25.

Figure 25. The content information attributes for an experiment

 68

6. The description of an experiment also requires the addition of two attributes: the name
(name) and the title. To enter them, go to the node that corresponds to the experiment
and click on “New Attribute” (figure 26). Write the word “name” in the text square and
click on the “Accept” button.

Figure 26. Adding the attribute name to a new experiment

7. Now repeat this process for the attribute “title”. As a result you will see that if the
experiment is selected, there are two new attributes without value. To give them a value,
follow each of the links in the table “Attributes” in the frame on the right. A window
will appear with an area for text where you can assign value to the attribute (figure 27).

 69

Figure 27. Giving the name to an experiment

8. Repeat the previous process for the other attribute. As a result, you should get a
configuration for a new experiment similar to the one shown in figure 28.

Figure 28. Experiment structure: attributes and content information

 70

Entering a new activity

The following is a description of how an activity can be added to the previous
experiment using the editor. Follow these steps:

1. Go to the experiment that you would like to incorporate a new activity to and
click “New Child” on the frame on the right. On the right frame on the right type
the word “activity” (figure 29) and click the button “Accept”.

Figure 29. Adding a new activity to an experiment

2. Go to the node activity recently created. Add two attributes to the node: name

and title. To do so, click the button “New Attribute”, type the word “name”
(figure 30) and click on the button “Accept”. Repeat the process for the other
attribute.

 71

Figure 30. Creating the attribute name for a new activity

3. Go to the activity node and follow the link of each of the attributes on the table
“Attributes” on the frame on the right to assign them a value. Type in a value in the text
area (figure 31) and click on “Accept”. Repeat the process for the other attribute.

Figure 31. Filling in the title of a new activity

 72

4. As a result, the newly created activity should look like the example shown in
figure 32.

Figure 32. A new activity. Attributes name and title and their values

Entering a new task

In this section we describe the steps to enter a new task into an activity using the editor.
For this, we create a new node with the name “taskbyrole” that depends on the activity
that it belongs to. The process is summarized in the following steps:

1. Go to the node that corresponds to the activity that you would like to add the task
to. Click on the button “New Child” and type in the word “taskbyrole” in the text
square on the right (figure 33). Then click on the button “Accept”.

 73

Figure 33. Creating a new taskbyrole node for an activity

2. Now go to the recently created node. Three new attributes must be created: an

identifier (“id”), a name (“name”) and a list of roles (“roles”). Click on the
button “New Attribute” and write in the text frame the word “id” (figure 34).
Then click on Accept. Repeat this process for the other two attributes.

Figure 34. Adding an identifier to a new taskbyrole

 74

3. Go back to the node created “taskbyrole” and select one of the links that appear
in the table “Attributes” in the right frame. Type the value that you want to
assign to the attribute in the text area that comes up (figure 35) and click on the
Accept button. Repeat the process for the other two attributes. Notice that the
attribute roles correspond to a collection of names. These must be typed in
separately in blanks in the text frame and the possible values must be defined
within list_roles. The following image illustrates this.

Figure 35. Adding a list of possible roles for a task to a taskbyrole element

4. Finally the task should be translated in the node taskbyrole similar to figure 36.

 75

Figure 36. Inspecting the attributes of a new taskbyrole element

4.1.2.3 Definition of prerequisites
Another relevant aspect of building a scenario is the addition of prerequisites associated
with tasks, activities and experiments. These prerequisites can be of different kinds.
They can specify temporary starting and ending periods, or conditions regarding other
experiments, activities or tasks.

The definition of a prerequisite is the following:

 Starting date: The date when access is permitted indicated by the value in the
attribute “date_in” using the following format: year-month-day
 Ending date: Date when access is no longer permitted indicated by the value in

the attribute “date_out” using the following format: year-month-day
 A specific part of the AD (experiment, activity or taskbyrole) be:

o correct: The tutor has corrected that part of the AD
o done: The student has carried out that part of the AD
o passed: The qualification of that part is five or above

The desired value is indicated in the attribute “type” and the attribute “ref”
indicates the id of part of the AD (experiment, activity or taskbyrole)

To define the prerequisites within the AD we have to carry out the following steps:

 76

 Put all the definitions of prerequisites that you desire to use in the AD within the
<list_prerrequisites>.
 Then within the section we want attached to the prerequisite we use the attribute

“prerrequisite” and we give it the value “id_prerrequisite” that refers to the
prerequisite we want to apply to this part.

Example:
 .
 .
 <list_prerrequisites id="listaPre1">

 <prerrequisite id="pre1" date_in="2003-3-4" date_out="2003-3-12"/>
 <prerrequisite id="pre2" ref="exp_1" type="passed"/>

 </list_prerrequisites>
 .
 .
 <experiment name="exp_1" title="Experiment 1" prerrequisite="pre1">
 .
 .
 <experiment name="exp_2" title="Experiment 2" prerrequisite="pre2">
 .
 .
We will illustrate the addition of prerequisites adding the two following prerequisites.

• A date prerequisite
• A prerequisite that you must first have experiment exp1 finished in order to be

able to carry out experiment exp2.

To carry this out, the first thing that we must do is declare the collection of prerequisites,
and then associate them to the experiments, activities or tasks that we desire. The
following are the steps to follow:

1. Go to the first experiment and click on the button “New Sibling”. Type in
“list_prerrequisites” (figure 37) in the text square that appears and click on the
Accept button.

 77

Figure 37. Adding a new list of prerequisites (list_prerrequisites) to an experiment

2. Create a new name id attribute on the recently created node. To do so, con on

the node and click on the button “New Attribute”. In the text square that appears,
type in the word “id” (figure 38) and click on “Accept”.

Figure 38. The list_prerrequisites element needs an attribute id (identifier)

 78

3. Go to the node again and select the attribute id in the table “Attributes” in the
table on the right. Assign a value to the identifier (for example,
“listPrerrequisites1”) and click the button “Update” (figure 39).

Figure 39. Filling in the identifier (id attribute) for the list_prerequisites element

4. Now we create our first prerequisite. We must go to the node list_prerrequisites

and click on the button “New Child”. On the text square, type “prerrequisite”
(figure 40) and click on “Accept”.

 79

Figure 40. Adding a new prerequisite (prerequisite node)

5. Now three attributes must be created and given a value: a prerequisite identifier

(id), a starting date (date_in) and an ending date (date_out). The process is
similar to the one repeated in steps 2 through 3 so we will not repeat them again.
As a result we should obtain the prerequisite just as it appears in figure 41.

Figure 41. Attributes for defining a new prerequisite

 80

6. Repeat the process for the second prerequisite (figure 42). This time the second

prerequisite must have an identifier (id) as attributes, a reference to the
experiment exp1 (ref with value exp_1) and an attribute type (type with value
passed).

Figure 42. A new prerequisite and its attributes

7. Now we attach the prerequisite pre1 to the experiment exp_1 and the prerequisite

pre2 to the experiment exp_2. To do so, we must add an attribute “prerrequisite”
(figure 43).

 81

Figure 43. Adding a new prerequisite for the current experiment

8. And assign the value pre1 to the corresponding node to the experiment exp_1

(figure 44).

Figure 44. Identifying the experiment’s prerequisite

9. This process must be repeated for the experiment exp_2 and the prerequisite

pre2. This leaves the structure of the document just as it appears in figure 45.

 82

Figure 45. Attributes (including a prerequisite) and content for an experiment

4.1.2.4 Defining internal tools

The use of internal tools (ones which can not run without the AD System) in the
environment can also require the appropriate configuration of the Active Document.

To use the following internal tools associated to a task we have to follow these steps:

 editor:
Make a reference to the resource whose attribute “id” within the resource file is
“FormularioEditor”. So, we have to crate an element of the type “resource_ref”,
assign its attribute “id_ref” the value “FormularioEditor” and assign it the value
we desire to the parameter “text” of the tool editor. This value will appear as
header of the Editor.

The rest of the parameters that the label “resource_ref” has defined are optional.
In this example we give them a value but in the case that we do not, the system
will use the values it has defined by defect.

 <resource_ref id="ref7" id_ref="FormularioEditor" display="insite" label="Text Editor">
 <parameter>
 <param name="text" value="Comments"/>
 </parameter>
 </resource_ref>

 83

 tooltest:

Make a reference to the resource whose attribute “id” within the resource file is
“ToolTest”. For this we need to create an element of the type “resource_ref”,
assign its attribute “id_ref” the value “ToolTest” and then assign the following
parameters the value we would like:

o QUESTIONS: Will contain the question
o ANSWERS: Possible answers to the question must be specified in the

following way:
<Id_de_respuesta>) Possible answer
Where <Id_de_respuesta> will be a letter from the alphabet assigned in
ascending order depending on the possible answers that there are.
To separate the answers from each other we use the character “#”.

o JUST: Corrections that the professor wants to make must be specified
separating each of the possible answers with the character “#”.

o responses: <Id_de_respuesta> the correct answers separated from each
other with the character “#”.

The rest of the parameters that the label “resource_ref” identifies are optional. In
this example we assign them a value but if no value is assigned, the system will
use the values that are defined by defect.

 <resource_ref id="ref6666" id_ref="ToolTest" display="insite" label="Select" height="300" width="400">
 <parameter>
 <param name="QUESTIONS" value="Question"/>
 <param name="ANSWERS" value="a) Answer 1.#b) Answer 2.#c) Answer 3.#d) Answer 4."/>
 <param name="JUST" value="False#Correct#False#Correct"/>
 <param name="responses" value="b#d"/>
 </parameter>

</resource_ref>

 DrawTool:
Make a reference whose attribute “id” within the file of resources is “Drawtool”.
So, we must create a “resource_ref” element and assign its attribute “id_ref” the
value “Drawtool”.

The rest of the parameters that the label “resource_ref” defines are optional. In
this example we assign a value but if we didn’t, the system would use the values
defined by defect.

<resource_ref id="EditorMAref1" id_ref="Drawtool" display="insite" label="Draw Editor" height="300"
width="300"/>

Next we describe the process of tool reference that basically consists of associating the
indicated task in a node “mediating_tools” where to refer the uses of each tool.
If we want to add a tool called “FormularioEditor” to the task “taskdef02” we must
follow these steps:

 84

1. Go to the node corresponding to the task that you want to vinculate the use of the

tool (a node of the taskbyrole type). Click on the button “New Child” and type in
the word “mediating_tools” in the text square that appears (figure 46). Then click
on “Accept”.

Figure 46. Adding mediating_tools to a taskbyrole

2. Go to the recently created node and repeat the previous process. In this case you

must type the word “resource_ref” in the text square (figure 47).

 85

Figure 47. Adding a resource_ref to a mediating_tools node

3. Create a new name attribute id. Go to the recently created node and click on

“New Attribute”. Type in the word “id” (figure 48) in the text square and click
on “Accept”.

Figure 48. Adding an identifier (id) to a resource_ref

 86

4. Assign a value to the attribute. To do so, follow the link id from the attributes
table that appears in the right frame of the editor and assign it a value in the text
area that appears (figure 49). Click on “Update”.

Figure 49. Filling in the id’s value for the resource_ref

5. Repeat steps 3 and 4 for the rest of the attributes: id_ref, display, label, height

and weight, as shown in figure 50.

Figure 50. Attributes for a resource_ref

 87

6. Now the tool parameters must be specified. To do so, go to the resource node

resource_ref and create a new child with the name “parameter” by clicking on
the button “New Child” (figure 51).

Figure 51. Adding a new parameter (a list of param) to a resource_ref

7. Go to this node and repeat the previous process creating this time a child node

called “param” (figure 52).

 88

Figure 52. Adding a new param (an actual parameter) to a parameter(a param list)

8. Add an attribute called “name”. To do so, go to the node param and click on

New Attribute. Then type in the word “name” in the text square (figure 53) and
click Accept.

Figure 53. Adding the attribute name to a new param

 89

9. Select the attribute in the Attributes table in said node and assign the name of the
parameter (in this case it is “text”) as a value in the text area that appears (figure
54). Click the Update button.

Figure 54. Naming the param: this parameter’s name will be ‘text’

4.1.2.5 Defining the correction tool

One special type of references of use that can be configured are those which refer to
correction tools used by teachers (marker) to correct students. This type of reference
requires a task with specific peculiarities about where to unfold. More specifically, it is
necessary to create a structure of the task type (taskbyole) whose attribute id is the same
as the task it is correcting only the suffix “_m” is added. The only role admitted in this
task is the role of the corrector (marker).

To associate the correction tool to a task, we must carry out the following steps:

 Define a new task in its own activity, whose id would be “<idTask>_m” that
would contain the correction tool where < idTask > would be the id of the task
we want to associate the correction tool to.
 Associate the correction task to the task that we want to correct through the

attribute “markerTask”, to which we will assign the value the identifier of the
task that contains the correction tool that will be “<idTask >_m”.

Example:
 <taskbyrole id="taskdef01" name="Task 1" roles="student teacher" markerTask="taskdef01_m">
 Description of the Task 1
 <mediating_tools>

 90

 <resource_ref id="EditorMAref1" id_ref="Drawtool" display="insite" label="Draw Editor"
height="300" width="300"/>
 <resource_ref id="ref7" id_ref="FormularioEditor" display="insite" label="Text Editor">
 <parameter>
 <param name="text" value="Comments"/>
 </parameter>
 </resource_ref>
 </mediating_tools>
 </taskbyrole>
 <taskbyrole id="taskdef01_m" name="correct" roles="marker">
 <mediating_tools>
 <resource_ref display="insite" height="500" id="ref666" id_ref="correction_tool" label=""
width="300">
 <parameter>
 <param name="just" value="Correct#Average#Wrong"/>
 <param name="values" value="10#5#0"/>
 </parameter>
 </resource_ref>
 </mediating_tools>
 . </taskbyrole>

Changes in the community file:

 Modify the community file so that the task whose id is “<idTask>” is done by:
o The students that want to carry out the task in the role of student
o The teacher in the role of teacher

And the task that contains the correction tool is done by:

o The teacher in the role of teacher

Example:
 <task_organisation task_name="taskdef01">
 <community_ref id="c01">
 <actor_ref id="test" role="student"/>
 <actor_ref id="marker" role="marker"/>
 </community_ref>
 </task_organisation>
 <task_organisation task_name="taskdef01_m">
 <community_ref id="c01">
 <actor_ref id="marker" role="marker"/>
 </community_ref>
 </task_organisation>

Since the configuration is so similar to the previous case, we are not going to specify the
configuration step by step. To see how tasks are configured and tools are referenced, the
previous sections can be consulted. The final result should be like the one that appears in
figure 55.

 91

Figure 55. Attributes for a taskbyrole

It is also necessary to specify what task corrects the activity that we have just
configured. In order to do that, we must specify an attribute “markerTask” in the task
that is corrected for this task. The value of said attribute should correspond to the
identifier of the correction task.

So, if we want our task to show correction task taskdef01_m we must correct the task
taskdef01 and go to said node and add the attribute markerTask with value taskdef01_m.
This is summarized in the following steps:

1. Go to the node taskbyrole whose identifier has the value taskdef01. Click on the
button New Attribute. In the text square, write the word “markerTask” (figure 56) and
click Accept.

 92

Figure 56. Adding a markerTask to a taskbyrole

2. Select the attribute from the table Attributes in the right side frame of the editor and
type in the word taskdef01_m in the text area that appears (figure 57). Finally, click on
Update.

Figure 57. Filling in the markerTask’s name for the current taskbyrole

 93

4.1.3 Definition of the resources

The Resources represent the support for a specific task to the members of a given
community. For each task, a description of the available resources is given. This
description is processed by the AD architecture in combination with the Description AD
in order to relate the appropriate tasks to and tools. Performing the activities specified in
an Active Document may either require or benefit the use of a number of resources,
such as external document repositories or different types of tools.

4.1.3.1 Elements for defining a resource

Document
 <document….>

Explanation

Element: definition of document from IMS Content Packaging Specificacion
v0.91
 Attributes:
 Id: defines a unique identifier used for identification and
reference purposes, for example, when a resource is included in some
experimental activity

XML description
<!ELEMENT document (file*)>
<!ATTLIST document
 id ID #REQUIRED>

Example

<document id="d001">
 <file uri="intro/introduction.html" format="HTML"/>
 <file uri="map.gif" format="image"/>
 <file uri="intro/safety.gif" format="image"/>
 <file uri="intro/description.html" format="HTML"/>
</document>

File
 <file….>

Explanation

Element: the actual file that holds the document
 Attributes:

o uri: location of the file that contains the actual fragment of the
document

o format: limited list of accepted formats for the file

XML description

<!ELEMENT file EMPTY>
<!ATTLIST file
 uri CDATA #IMPLIED
 format (HTML | PS | PDF | image) #REQUIRED

Example <file uri="map.gif" format="image"/>

Operation

 94

 <operation….>

Explanation

Element: operation configures permisions for the way in which a tool can be
used
Attributes:

 Name: identification of the person in question
 Role: the category of the person which defines the way in which a

tool can be used (for example, student, teacher, tutor)

XML description

<!ELEMENT operation EMPTY>
<!ATTLIST operation
 name NMTOKEN #REQUIRED
 role NMTOKEN #IMPLIED>

Example <operation name="monitor" role="tutor" />

Parameter
 <parameter….>

Explanation
Element: startup parameters required by a particular tool
 Attributes: a set of name-value pairs for each parameter. Values are
meant to be set at startup when required, so they are optional

XML description

<!ELEMENT parameter (param*)>
<!ELEMENT param EMPTY>
<!ATTLIST param
 name CDATA #REQUIRED
 value CDATA #IMPLIED

Example

<parameter>
 <param name="portNo"/>
 <param name="bgimage"/>
</parameter>

Editor window See figure 69

Resource
 <resource….>

Explanation

the basic resource definition which is either a document (text, image, etc) or
some kind of tool
 Attributes2:

o id: identifier
o use: In which context is the resource to be used
o access_mode: how is the resource to be used

XML description

<!ELEMENT resource (metadata?, (document | tool))>
<!ATTLIST resource
 id ID #REQUIRED
 use (general | domain | specific) #REQUIRED
 access_mode (single | shareable) #IMPLIED

2 Attributes typed in boldface are required for the element, as can be seen in their XML definition

 95

Example

<resource id="document1" use="domain">
 <metadata>In here we could put information which would help classify
and facilitate search operations for this resource</metadata>
 <document id="d001">
 <file uri="intro/introduction.html" format="HTML"/>
 <file uri="map.gif" format="image"/>
 <file uri="intro/safety.gif" format="image"/>
 <file uri="intro/description.html" format="HTML"/>
 </document>
</resource>

Editor window See figures 58 to 65

Tool
 <tool….>

Explanation

Element: the main tool definition
 Attributes:

o Id: defines a unique identifier used for identification and
reference purposes, for example, when a resource is included
in some experimental activity

o Name: the title of the tool
o Type: distinguishes between virtual and real tools
o Uri: location of tool
o Code: name of main class file in the case of Java programs
o Mode: to be used either alone or in group
o Format: what type of tool

 HTML: code intended to be pasted directly into the
execution environment (in our case the
ActiveDocument)

 Applet: a Java applet that can be run in the execution
environment directly

 Application: an external application which would be
run according to its definition and features

o outcome_format - the type of result produced by the tool
o outcome_uri - the location of the result in the case of external

tools that do not actually directly return a result but require
that a petition be made

o icon - does the tool have an icon, and if so, its name

XML description

<!ELEMENT tool (workarea*, parameter?, operation*)>
<!ATTLIST tool
 id ID #REQUIRED
 name CDATA #REQUIRED
 type (logical | physical) #REQUIRED
 uri CDATA #IMPLIED
 code CDATA #IMPLIED

 96

 mode (individual | collaborative) #REQUIRED
 format (uri | HTML | applet | application) #REQUIRED
 outcome_format (gif | svg | jpg | plaintext | word | latex | ps | pdf | uri)
#IMPLIED
 outcome_uri CDATA #IMPLIED
 icon CDATA #IMPLIED

Example

<tool id="DrawTool"
 name="Draw Editor" type="logical"
 uri="http://rigel.lsi.uned.es:4080/ad1_des/jsp/parser_jsp/Applets/Paint.jar"
 code="DrawTest.class" mode="individual" format="applet">
 <workarea id="tool1_wa_01" outcome_type="UTF-8"/>
</tool>

Editon window See figures Figure 66 and 67

Workarea
 <workarea….>

Explanation

Element: workarea defines the scope of application of a tool so that a
particular tool can be used with different data
Attributes:

o Id: defines a unique identifier used for identification and
reference purposes, for example, when a resource is included
in some experimental activity

o outcome_format: the type of result that is produced in the
workarea

XML description

<!ELEMENT workarea EMPTY>
<!ATTLIST workarea
 id ID #REQUIRED
 outcome_type CDATA #REQUIRED

Example <workarea id="tool1_wa_03" outcome_type="UTF-8"/>
Editor window See figure 68

4.1.3.2 Editing a resource XML file
When editing the file RL.xml using the MetadataEditor, it is very important that it is
done fulfilling the dtd called “AD_ResourceList_v2.dtd” because if it isn’t, the AD will
not work.

The definition of the resources that will be used within the learning environment must be
appropriately configurated editing the resource file. This file can be accessed by
selecting the entrance RL.xml from the initial screen of the editor (figure 58).

 97

Figure 58. Selecting the resource file (RL.xml)

When editing this file we can see that its content mostly corresponds to the collection of
resources defined to be used in this environment. By omission, the installation process
creates a resource file that contains the most elemental work tools (figure 59).

Figure 59. Default resource file with the basic tools included

Entering a new resource

 98

Now we are going to explain the steps to follow to add a new resource to the list of those
that already exist.

1. Go to the node resource_list and click on the button New Child. In the text area type
in “resource” (figure 60) and click Accept.

Figure 60. Adding a new resource to the resource_list

3. Go to the recently created node and repeat the previous process to create two

child nodes with the names metadata and tool (figure 61).

 99

Figure 61. Adding metadata and a tool to a new resource

4. Create an attribute id. To do so, go to the node resource and select New Attribute.
Write the word “id” in the text area (figure 62) and click on Accept. Repeat this process
for the attributes “access_mode” and “use”.

 100

Figure 62. Adding the attribute id(identifier) to a new resource

5. Select an attribute from the table of attributes in the right side frame of the editor

and assign it a value in the text area (figure 63). Then click on Update.

Figure 63. Filling in the name of the resource (id)

 101

6. Repeat step 5 to give value to the other three attributes. As a result, you should obtain
the resource configuration shown in figure 64.

Figure 64. Attributes and content information for a new resource

7. Edit the field metadata. Go to the resource and follow the metadata link from the
table Content Information located in the right hand frame. When the area of text shows
up, add the metadata (figure 65) and click Update.

 102

Figure 65. Adding the (standard) metadata for a new resource

8. Add the following attributes to the node tool: id, name, type, uri, code, mode, format.
Go to the the node tool andn repeat steps 4 and 5. The result should be like the
configuration of the resource that appears in Figure 66.

Figure 66. Inspecting the tool’s attributes

 103

9. The two nodes which define the tool should be created. One that refers to the work
area (workarea) and another that is relative to the parameters. The process is similar to
the one in step 3. The results of the resource configuration appears in figure 67.

Figure 67. A tool requires a workarea and a parameter (a list of params)

10 . Go to workarea and add the attributes id and outcome_type. The process is similar
to the one described in steps 4 and 5. The results appear in figure 68.

Figure 68. Attibutes for defining a workarea

 104

11. Go to parameter and create the nodes of the param type that constitute the tool
parameters. The edition of on of them is shown in figure 69.

Figure 69. A param (an actual parameter named ‘themperature’)

4.1.4 Definition of the community

Within DiViLab, the community AD will be automatically generated by the Archimed
LMS, as will be detailed in deliverable D7.7.

The Community AD represents the activity organization in order to describe the
assignment of roles for a specific task to the members of a given community. For each
activity, a description of the community involved is provided. This description is
processed by the AD architecture in combination with the Description AD in order to
relate the appropriate tasks and tools to the corresponding members of the community.
The use of a separate XML structure for the community gives rise to two interesting
mechanisms: firstly, communities can change during the development of the activity,
thus allowing dynamic role assignments to be made (amongst other possibilities); and
secondly, different Community AD can be combined with the same Description AD,
providing a flexible mechanism for the re-use of the same division of labour description
for a set of different working groups.

 105

4.1.4.1 Elements for defining a community

Active_doc_template

 <active_doc_template….>

Explanation

Element: Active Document template for the course being defined
Attributes:

o Name: the labdoc’s name. It is not an identifier
o Location: a literal describing the labdoc’s location

XML description
<!ELEMENT active_doc_template EMPTY>
<!ATTLIST active_doc_template
 name NMTOKEN #IMPLIED
 location CDATA #IMPLIED>

Example <active_doc_template location="*****" name="ChemicalLab"/>

Activity_organisation
 <activity_organisation….>

Explanation

Element: activity_organisation, is the child unit to experiment_organisation
within a community’s division of labour. It is split into a non-null number of
task_organisation elements
Attributes:

o activity_name: the id and unique identifier of this activity

XML description
<!ELEMENT activity_organisation (task_organisation+)>
<!ATTLIST activity_organisation
 activity_name NMTOKEN #REQUIRED>

Example

<activity_organisation activity_name="actividad_001">
 <task_organisation task_name="taskdef01">
 … stuff cut for saving space
 see the following elements for details …
 </task_organisation>
 <task_organisation task_name="taskdef01_m">
 … stuff cut for saving space
 see the following elements for details …
 </task_organisation>
 <task_organisation task_name="taskdef02">
 … stuff cut for saving space
 see the following elements for details …
 </task_organisation>
</activity_organisation>

Actor
 <actor….>

Explanation
Element: actor, each component of a community
Attributes:

o id: the actor’s unique identifier
XML description <!ELEMENT actor EMPTY> <!ATTLIST actor id NMTOKEN #REQUIRED>

 106

Example <actor id="usu1"/>
Editor window See figures 75 and 76

Actor_ref
 <actor_ref….>

Explanation

Element: actor_ref, a reference to a community member indicating the
actor’s role in the task where this is involved
Attributes:

o id: the unique identifier of this actor
o role: the one played by this actor for the current task

XML description
<!ELEMENT actor_ref EMPTY>
<!ATTLIST actor_ref
 id NMTOKEN #REQUIRED
 role NMTOKEN #IMPLIED>

Example <actor_ref id="test" role="student"/>
Editor window See figures 81 to 84

Community
 <community….>

Explanation

Element: community, the list of the actors composing a community
Attributes:

o id: the community identifier.
o name: the community name

XML description
<!ELEMENT community (actor+)>
<!ATTLIST community
 id ID #REQUIRED
 name CDATA #IMPLIED>

Example

<community id="c01" name="Group 1">
 <actor id="test"/>
 <actor id="usu1"/>
 <actor id="usu2"/>
</community>

Editor window See figures 72 to 74

Community_ref
 <community_ref….>

Explanation
Element: a reference to an existent community
Attributes:

o community_ref: the reference of the community
XML description <!ELEMENT community_ref (actor_ref+)> <!ATTLIST community_ref id IDREF #REQUIRED>

Example

<community_ref id="c01">
 <actor_ref id="test" role="student"/>
 <actor_ref id="usu1" role="student"/>
 <actor_ref id="usu2" role="student"/>
 <actor_ref id="marker" role="marker"/>
</community_ref>

Editor window See figures 79 and 80

 107

Course
 <course….>

Explanation

Element: course is the top element of the community configuration file and
includes the Active Document template for the course being defined, a
reference to an information model, the list of involved communities and a
workplan

XML description <!ELEMENT course (active_doc_template, information_model, list_communities, workplan)>

Example See the the following elements
Editor window See figures 70 and 71

Experiment_organisation
 <experiment_organisation….>

Explanation

Element: experiment_organisation, the topmost unit for a community’s
division of labour. It is split into a non-null number of activity_organisation
Attributes:

o experiment_name: the name of this experiment

XML description
<!ELEMENT experiment_organisation (activity_organisation+)>
<!ATTLIST experiment_organisation
 experiment_name NMTOKEN #REQUIRED>

Example

<experiment_organisation experiment_name="exp_1">
 <activity_organisation activity_name="actividad_001">
 … stuff cut for saving space
 see the following elements for details …
 </activity_organisation>
</experiment_organisation>

Information_model
 <information_model….>

Explanation

Element: information model for the course being defined. It’s used for
documentation purposes
Attributes:

o BD_name: the information model’s DataBase’s name.
o Location: the URI of the previous DB
o Version: the DB’s version

XML description

<!ELEMENT information_model EMPTY>
<!ATTLIST information_model
 BD_name NMTOKEN #IMPLIED
 location CDATA #IMPLIED
 version CDATA #IMPLIED>

Example <information_model BD_name="Chem01" location="http://sensei.lsi.uned.es/BD" version="mSQL"/>

List_communities
 <list_communities….>

Explanation Element: list_communities is a non empty set of community elements (see

 108

community definition below)
XML description <!ELEMENT list_communities (community+)>

Example

<list_communities>
 <community id="c01" name="Group 1">
 <actor id="test"/>
 <actor id="usu1"/>
 <actor id="usu2"/>
 </community>
</list_communities>

Editor window See figure 71

Task_organisation
 <task_organisation….>

Explanation

Element: task_organisation, is the child unit to activity_organisation within a
community’s division of labour (i.e., an activity_organisation element is
composed of a number of task_organisation elements). It includes a non
empty set of community_ref elements
Attributes:

o task_name: the id and unique identifier of this task
XML description <!ELEMENT task_organisation (community_ref+)> <!ATTLIST task_organisation task_name ID #REQUIRED>

Example

<task_organisation task_name="taskdef03">
 <community_ref id="c01">
 <actor_ref id="test" role="student"/>
 <actor_ref id="usu1" role="student"/>
 <actor_ref id="usu2" role="student"/>
 <actor_ref id="marker" role="marker"/>
 </community_ref>
</task_organisation>

Editor window See figures 77 and 78

Workplan
 <workplan…>

Explanation
Element: workplan; it reflects (see its subelements for details) the
community’s division of labour and consists of a non empty series of
experiment_organisations

XML description <!ELEMENT workplan (experiment_organisation+)>

Example

<workplan>
 <experiment_organisation experiment_name="exp_1">
 … stuff cut for saving space
 see the following elements for details …
 </experiment_organisation>
</workplan>

 109

4.1.4.2 Editing a community XML file
When editing the file CF.xml using the MetadataEditor it is very important to fulfil the
dtd called “AD_Comunity_v23.dtd” because if it isn’t fulfilled, the AD will not work.

The last document that can be edited with the editor web is the communities document.
This contains all the information having to do with user communities that have
permission to use the learning environment. This file also indicates what tasks are done
in what community. To edit this file we should select the entrance CF.xml from the
initial menu of the editor (figure 70).

Figure 70. Choosing the community file (CF.xml)

As you can see, once we edit the communities file we can observe that there are two
relevant nodes. One of them is list_communities that contains the collection of all of the
communities. The other is workplan and it contains the organization of the experiments
that allows them to be associated to communities (figure 71).

 110

Figure 71. course structure showing the relevant nodes list_communities and workplan

So two configuration activities exist that deserve to be the cent of our attention. First of
all, the addition of a new community to the learning atmosphere. Secondly, the
assigning of an experiment for that community. In the next few lines we will describe
these two situations in further detail.

Entering a new community

The entry of a new community is a process that requires the creation of the community
and the addition of the actors that make it up in order to assign them their specific roles.
Next we have the steps that must be followed:

1. Go to the node list_communities and click on the button New Child. Type the
word “community” (figure 72) in the text square and click on Accept.

 111

Figure 72. Adding a new community node to a list_communities

2. Go to the recently created node community and create two attributes: id and

name. To do so, click on the button New Attribute, type the word “id” (figure 73)
in the text square and click Accept. Repeat this process for the other attribute.

Figure 73. Adding the attribute id (identifier) to a community

 112

3. Select an attribute from the table Attributes from the right side editor frame. In
the text area, assign a value to the attribute (figure 74) and click on Update.
Repeat this process with the other attribute.

Figure 74. Filling in the value for the community’s id

4. Now create an actor associated with that community. Go to the node community

that we are editing and click on the button New Child. In the text square, write
the word actor (figure 75) and click on Accept.

Figure 75. Adding a new actor to a community

 113

5. Go to the node and add an attribute id that identifies the actor. Follow the steps
described in points 2 and 3. Repeat the process described in steps 4 and 5 so that
each actor has a community. That way we create a community of 3 users
looking like figure 76.

Figure 76. Adding the attribute id for the new actor

Assigning a task to a community

The other important configuration activity is assigning a task to a community. To show
this aspect we will use the task that is defined by omission in the community document
and we will add the one we created in the previous step. As shown in figure 77, the
community c01 has the task being edited assigned since a reference exists to that
community as a child node.

 114

Figure 77. A community_ref including an actor_ref

We will be discovering the process to work with the community c02. So, these are the
steps to be followed:

1. Go to the node task_organization that identifies the task that you want to be
associated with the community. Click on the button New Child and write the
word “community_ref” in the text square that appears (figure 78). Then click the
button Accept.

 115

Figure 78. Assigning a community (by means of community_ref) to a task

2. Go to the recently created node community_ref . Add an attribute id. Click on

New Attribute and type in “id” in the text square that appears (figure 79). Then
click on Accept.

Figure 79. Adding the attribute id to a community_ref

 116

3. Select said attribute in the table of attributes and assign it the value of the
community you want that task to be associated with. In our example it is
community c02 (figure 80). Then click on Update.

Figure 80. Filling in the community’s id value for the community_ref

4. Now we must specify the member of the community that is in charge of

developing the activity. We must create a reference to an actor from that same
community. Go to the node community_ref and click on the button New Child.
Type “actor_ref” in the text square that appears (figure 81) and click on the
button Accept.

 117

Figure 81. Adding the actor who will be responsible for this community.

5. Select the recently created node actor_ref and create two attributes: id and role.

Click on the button New Attribute and write the word “id” (figure 82) in the text
square. Repeat the process with the other attribute.

Figure 82. Creating the attribute id for the new actor

6. Assign value to these attributes. In our case id must contain the value test and

role the value student. Go to the node actor_ref and follow the link of an

 118

attribute. Write the value of the attribute in the text area (figure 83) and click on
Update.

Figure 83. Filling in the value of the actor_ref’s id attribute

7. We should get an actor node like the one in figure 84 as a result.

Figure 84. Required attributes for the actor_ref

 119

4.1.5 The results
The results files fulfil the called “AD_growable_v3.dtd”.

4.1.5.1 What is the results file?
The results file is the representation in XML of the objects built by the students in each
of the tasks presented in an AD.

The basic structure it has is the following:

 Labdoc

Experiments
Activities

Taskbyroles
Tools

Outcomes

However this structure will vary depending on the AD that the results file belongs to.

An outcome represents a result stored by a DB tool: the type is defined in it, the date it
was stored, the format, etc.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE user_active_doc SYSTEM "http://rigel.lsi.uned.es:4080/ADServer/Conf/AD_growable_v3.dtd ">
<user_active_doc user_id="test">
 <profile>User test</profile>
 <labdoc_ref id="labdoc01">
 <experiment_ref id="exp_1">
 <activity_ref id="activity_001">
 <taskbyrole_ref id="taskdef01">
 <tool_ref id="DrawTool">
 <outcome_ref date="13/6/2003 13:13:7" outcome_format="svg" outcome_type="text"
workarea_id="EditorMAref1"><![CDATA[<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg><svg>
 <line x1="147.0" y1="44.0" x2="84.0" y2="120.0" style="stroke-width:1;stroke:rgb(255,0,0)"/>
 <line x1="84.0" y1="120.0" x2="184.0" y2="121.0" style="stroke-width:1;stroke:rgb(255,0,0)"/>
 <line x1="149.0" y1="43.0" x2="187.0" y2="119.0" style="stroke-width:1;stroke:rgb(255,0,0)"/>
</svg>]]></outcome_ref>
 </tool_ref>
 <tool_ref id="tool4">
 <outcome_ref date="13/6/2003 13:13:11" outcome_format="plaintext"
outcome_type="text" workarea_id="ref7"><![CDATA[Result saved]]></outcome_ref>
 </tool_ref>
 </taskbyrole_ref>
 <taskbyrole_ref id="taskdef01_m"/>
 <taskbyrole_ref id="taskdef02">

 120

 <tool_ref id="tooltest">
 <outcome_ref date="13/6/2003 13:13:20" outcome_format="plaintext"
outcome_type="internal" workarea_id="ref6666"><![CDATA[a) Answer 1.]]></outcome_ref>
 </tool_ref>
 </taskbyrole_ref>
 <taskbyrole_ref id="taskdef03"/>
 <taskbyrole_ref id="taskdef03_m"/>
 </activity_ref>
 </experiment_ref>
 </labdoc_ref>
</user_active_doc>

When you enter the environment of an AD with the role of student, you find inside the
“Navigation menu” an option that allows you to generate an XML results file associated
with the student that has used the environment. (figure 89).

4.2 Working on an AD scenario as a student
To work in the system in the role of student, we open a navigator and connect to:
http://localhost:catalina_port/ADServerSetup

In the section “Work AD” we select the AD that we want to work with (figure 85), and
click on the button “Work as Student Role”.

Figure 85. AD Server interface: selecting the AD

 121

4.2.1 Login the system

The entrance point that gives access to the AD will appear (in this case “ADExample”)
asking for the entry of the user’s access data (figure 86).

Title

Comment

Icon Menu

Figure 86. System access window

The users that can access the system are the ones that are registered in the table “User”
belonging to the database used to store the results (in this case DBResults). By defect
when creating an AD two users are created (one to work as student and the other as
teacher) but if preferred, more can be added as it is described in point 4.1Working in the
system as a learning scenario designer in the section of Databases.

The opening page to the AD will ask for the inclusion of some data that is personal for
each user: “login” and “password”, in this case we will use the user with the role of
student created by defect upon entering the system (figure 87):

Login: test
Password: test

 122

Figure 87. Login as test user

Once the solicited data has been entered, click on “Submit”, and this will make the
ADServer validate whether the information has been entered correctly. If it hasn’t been,
there will be a message indicating the error.

If the data is correct, two windows will appear (figure 88) that will ask if you wish to
install and run the subprogram signed and distributed by “LTCS”, and you should
answer “Si”. To avoid these windows appearing each time the environment is accessed,
answer “Conceder siempre”. Note that if the Java run time has been installed in English
the window will obviously present the options in that language and not in Spanish.

Figure 88. Installation dialog for the required software

 123

4.2.2 The interface

Here is an environment that corresponds to our AD “ADExample” just as it is shown in
figure 89.

Title Comments

Menu

Navigation Menu

Contents Table Work Area

Tool Bar

Icon Copyright

Figure 89. The Active Document interface

Depending on the configuration that has been selected, we can see the following
elements (figure 89):

 Upper part:
o At the very top, to the left you can see the title
o On the left you can see the comment
o Just below the title we can see one or two menu bars, if two appear, the

first one is a menu that we have defined upon creating the AD.
o The navigation menu (if there are two, the second menu) is from the

application and it allows you to change the view of the AD. The available
options are the following:
 Menu OFF | ON: Allows taking out or showing the table of

contents in the central left part.
 Result View | Work View: If activated the view of the results that

appear will be the results of the tasks the user has carried out. If
the work view is activated in the AD you will see the tools that
permit the user to carry out the tasks.

 124

 Tasks List: Shows the list of tasks to be done along with the
results of completed tasks

 Check List: Teacher’s comments about the tasks carried out by
the student.

 Result in XML: Shows the result of the tasks done by the student
in XML format.

 Central left area:
Known as the contents table. It allows the user to move around the different
sections that make up links to the experiments and defined activities in the AD,
the link text is the title of the section that is being run. When you click on one of
them the content unfolds in the central part of the window.

 Central part:

Known as work area. Here the content of the section of the table of contents
selected in each moment appears.

 Central-right part:

Contains the auxiliary tool bars.

 Lower part:
o On the left side the icon of the AD appears
o If a menu has been defined when the AD was created it will appear in the

central part.
o On the right side the copyright appears

4.2.3 How to interact with the environment
To see the activities defined within an experiment, all we have to do is to click on it.
When we click on “Experiment 1” we can see the following changes (figure 90):

 In the table of contents, under the link of the experiment, the activities that the
selected experiment has defined will appear.
 In the central part we see the description of the experiment.

 125

Figure 90. Working with the Active Document

When clicking on an activity we will see that in the workarea there is a description of the
activity followed by the defined tasks that this AD has defined for the user that has
accessed the environment.

For each task there will be a description and then, depending on the view (further
documented on page 131) we are in, we will see:

 In the work view (figure 91): an example of the Draw Tool can be seen which
has been associated with the task for the user to work with.

 126

Figure 91. Using a tool for the Experiment1’s Task1

 In the results view (figure 92): the results the user has previously saved for this
task can be seen, if something has been done.

Figure 92. Results for the tasks which have been carried out

 127

4.2.3.1 Use of internal tools within the tasks
Internat tools have been defined to be tools which only work with the AD system. Now
we will show how internal tools appear within the AD environment:

 editor: allows you to do task that have written text answers (figure 93). When
you click on “Save” it stores the answer on the results DB.

Figure 93. The editor: adding comments

 tooltest: It allows you to carry out, answer and correct the tasks that have
multiple-choice (figure 94). When you click on “Save” it saves the answer on the
results DB.

Figure 94. Multiple-choice testing tool (tooltest)

 128

 DrawTool: Allows you to carry out tasks that have answers in the form of
drawings (figure 95). You choose a colour (it has four defined colours), one
drawing mode (straight or curved) and a line thickness (thin or wide). When you
click on “Save” it stores the answer on the results DB.

Figure 95. Drawing tool (DrawTool)

Now we can move on to consider how the navigation menu can be used.

4.2.3.2 Navigation menu

o Menu off | on
When you click on the link, it changes the view of the document (figure 96).

 129

Figure 96. Changing the document view (menu off)

o Result View | WorkView

Result View
This is a view of the AD that shows the AD with the results the user has
produced for the tasks that were presented in the workarea of the project. With
this view the user can only view the results, they cannot modify or add.

o Tasks List
Allows the student to see the results produced for all the tasks defined in the
document at the same time (figure 97).

 130

Figure 97. Displaying the state of the tasks

o Check List

Allows you to see the answers to all defined tasks that were given by the student
along with the comments that the tutor might have made regarding them and the
qualification obtained (figure 98). Obviously if no correction tool has be defined
for this experiment then no comments can be made, so this would be empty.

 131

Figure 98. Viewing the student’s answers

o Result in XML

 132

Allows you to see the answers given by the student to all the tasks in the XML
format (figure 99).

Figure 99. The student’s answers in XML format

4.2.3.3 Tool Bar
In the right part of figure 100 we can find the toolBar, the exact composition of which
would depend on the tools which have been defined. We will now describe its different
components:

 133

Notepad

Calculator

E-Mail

Save - Act

Save

Figure 100. The toolbar’s components

o Notepad
When you click on the icon, a Windows notepad is opened (this button only
works with systems that use Windows).

o Calculator

When you click on the icon, the Windows calculator is opened (this button only
works with systems that use Windows).

o Email

When you click on this button the message editor defined in the system is
opened.

o Save associated to the AD

When you click on this button, the contents of the clipboard are saved as a partial
result associated to the AD.

o Save associated to the activity

When you click here the contents of the clipboard are saved as a partial result
associated to the task of the AD that is active at that time.

 134

4.2.3.4 Prerequisites revisited
If in the AD prerequisites have been defined, the student will not be able to see the part
that is restricted until the imposed conditions have been fulfilled (figure 101), if they
haven’t been fulfilled, a message will appear indicating what condition still has to be
met.

Figure 101. An error message: a prerequisite has not been satisfied

If the AD has defined prerequisites of the type “done”, the state of visualization of the
AD for the student will vary depending on the results entered.

4.2.4 Errors that can be produced when using the system in the

role of student
 Icons are missing in the toolbar: The user hasn’t given permission to the signed

applet or does not have j2re. Give permission to the applet as explained in point
4.2 Working on an AD scenario as a student in the section Login the System.
Check the installation of the j2re.
 Connection time is over. Please Reconnect: When the system is inactive for a

specific amount of time, the message from figure 102 indicates to the user that
the connection time has run out. Connect again with the ADServerSetup and
select the Active Document again.

 135

Figure 102. Timed out connection message

 Cannot connect to MySQL server …..: There are connection problems with the
database server (figure 103), the most probable cause is that it is down. Run the
DB server.

Figure 103. Unable to connect to MySQL server dialog

 Warning! An unespected error: When the error from figure 104 appears, and no

warning window comes up, we have to look at the Tomcat console (figure 105)
to see what the real error is. Normally it is due to some of the XML files that the
AD has do not fulfil the DTD. If the XML files do not fulfil the DTD, the
environment will not work.

 136

Figure 104. Reporting an unexpected error

Figure 105. Tomcat console: session output

If it is a problem with one of the XML files, edit the file so that it fulfils the
DTD.

 Visualization errors appear: When visualization errors appear when showing
defined tasks in an activity or when showing a list of tasks, it may be because
tool identifiers that are not defined in the RLxml are used within the file AD.xml.
 Associated tasks do not appear when they should: Go over the community file,

the user who entered into the system might not have any tasks associated to that
activity.

 137

4.3 Working on an AD scenario as a teacher

4.3.1 Login the system

To work in the system in the role of teacher, we open the navigator and we connect to:
http://localhost:catalina_port/ADServerSetup

In the section “Work AD” we select the AD that we want to work with and we click on
the button “Work as Teacher Role” (figure 106).

Figure 106. Choosing an AD to work as a teacher

A tutor or teacher has two different options when interacting with the system. Monitor
the work that the students are carrying out, see their progress, etc., or actually correct the
work, as can be seen in figure 109. A window will appear that gives access to the
correction document in the Active Document chosen, asking for the user access data to
be entered (figure 107).

 138

Figure 107. System access window

The opening page to the AD will ask for the inclusion of some personal data for each
user: “login” and “password”, in this case we will use the user with the role of teacher
created by defect to access the system (figure 108):

Login: marker
Password: marker

 139

Figure 108. Login as teacher (marker)

Figure 109. AD Correction or Monitor Selection

4.3.2 The Monitor

 140

This tool has been developed by the UDUI research group, and as such, makes use of
other tools they have previously built.

Program functionality – a brief technical description.

The basement of the monitor is built by the CoolModes-JavaProgram. It is a (shared)
workspace environment that provides a dynamic palette handling. Each palette can be
used to design a workspace as needed with graph based layouts. We chose this program
because of its flexible structure and because the TM/AD structure itself makes it obvious
to display themselves as graphs.

The monitor has a basic palette which consists of three elements

1. a general information of the current position in the navigation tree.
2. a node specific information panel that describes valuable information like

participants taking part, global and participant related status and describing
elements that are able to interact with the tutor (e.g. E-Mail address of a
participant is displayed and can be clicked to open a dialogue that sends him an
e-Mail.).
This information is displayed when the tutor touches a node (e.g. an experiment
or task) with the mouse or selects it. If he selects it the information will be
persistent even if the mouse leaves the component.

3. a legend that describes the important elements the monitor consists of. For
example, there are the colours that represent a specific state (like running,
finished, aborted), the icons and their meaning/functionality, the basic node
itself as it appears in the workspace and possible prerequisite types (represented
by different edges in the graph) an item can have.

Furthermore there will be palettes with filter components, that can be simply dropped
into a workspace, to be able to sift the contents of a TM request as well as a palette that
allows the tutor to define alarm “clocks” which inform him when specific conditions
appear (like a user misses a given date to deliver his work).

The workspace itself will display a closed graph consisting of one “Top Node” which
represents the highest item in the hierarchy level that is chosen and its directly
descending sub items (e.g. As TopNode we have an experiment that shows its activities).
These sub items are connected by “prerequisite”-edges in the manner they depend on
themselves.

To navigate the tutor simply clicks an icon at a corresponding node. It is possible to let a
sub item show its sub items, where all other nodes disappear to have a clean view, it is
possible to step higher in the hierarchy and show the TopNode along with its next higher
item and all of this nodes sub items, it is possible to show a directly preceding or
succeeding item (relative to the current TopNode) and its sub items, it is possible to
show the participants of an item or how they are organised in communities and at last it

 141

is possible to show all of the above with the focus on a specific participant.

The program structure in detail is firstly based on the palette design of CoolModes. Each
displayable Node is cut in three parts, a Model holding the data, a View responsible for
displaying the data to the user and a controller handling events and interaction with the
user and between model and view. These nodes are held in a separate Java-package in
the palettes tree of CoolModes. In the palettes package itself there is a class for every
palette that has to be displayed in the application.

How is the connection to the TaskManager is done?

The TaskManager provides a http-based interface for sending queries to it, where it is
possible to add various predefined parameters to the URL of the http connection in order
to specify the type and the depth of information requested. The output delivered to the
client by the http server is an XML document conforming to the TaskManager DTD.
This XML document basically contains information on a course, its participants and the
status of their activities. The depth of information can be adjusted by a parameter of the
TaskManager URL. Depending on the depth the status of the experiments, the activities
belonging to each of the experiments of the course, and of tasks that are part of an
activity. It contains as well the prerequisites for each of the experiments, activities or
tasks.

Cool Modes receives this XML document as an input stream. It is then parsed by a
DOM XML parser, and a structure of Java objects is created that is identical to the tree
structure of the XML input stream.

To get all information necessary for visualization in Cool Modes, it is sometimes
necessary to perform multiple http requests to the TaskManager server. From each of
these requests, such a structure of Java objects is created. The information gathered from
these object structures is then combined to create the nodes in Cool Modes, that
represent a course, an experiment, an activity or a task, and the edges between the nodes
representing the prerequsite relationships between them. The structure of the nodes and
edges is quite similar to the original object structure as created by parsing the Task
Manager XML stream. Only some Cool Modes-specific information must be added, for
instance each node must have a unique ID.

The UI - Information overview and navigation

The UI can be best explained by showing some examples. A course named “Course
IT2”, which are illustrated in figures 110 – 114.

 142

Figure 110. Aspects of the Monitor interface

Succeeding we have the experiment Software:

Figure 111. Aspects of the Monitor interface

 143

Of course the participants can be viewed (here at activity “Design pattern”):

Figure 112. Aspects of the Monitor interface

 144

To the right of the workspace we find the palette:

Figure 113. Aspects of the Monitor interface

The legend can be shortened:

Figure 114. Aspects of the Monitor interface

 145

4.3.3 The AD Corrector

Once the user data is valid, a window appears that shows the communities that are on the
AD and within each one of them it shows the students that belong to each community.
(figure 115).

Depending on the distribution of element within the page, we can see the following
elements:

 Upper part:
o At the very top, on the left you can see the title
o On the right you can see the comment
o If a menu has been defined when the AD was created, we can see it just

below the title.
o Name of the teacher that accessed the environment.

 Central part:
o If the user that has entered has got assigned correction tasks within this

AD, they appear grouped by community, the students that have
assignments to do on this AD, they have been assigned a correction tool.

 Lower part:
o In the left part you can see the AD icon
o If a menu has been defined when the AD was created, it will appear in the

central part.
o On the right you can see the copyright

Title

Menu

Comment

Name of teacher

Students

Icon Copyright

Figure 115. The Active Document’s teacher’s interface

 146

Next to the community identifier, you can see the names and surnames of the students in
this community that have tasks to be corrected.

Next to the names and surnames of each student you can see a series of links and a
message that indicates the state it is in:

 View: It allows you to see the qualifications obtained by the student in the
experiments and activities defined on the AD
 Mark: Allows the correction of theAD
 Print: Not used at the moment
 Send e-mail: Allows you to send an electronic mail message to the address that

is stored in the database for that student.
 Status: Indicates what stage the student is in with the carrying out of the AD. It

can have the following values:
o Not Started: Has not begun yet
o Nothing New: There is nothing new
o New Work: New tasks are available

4.3.4 How to interact with the correction tool

4.3.4.1 Marking
When you click on the link “Mark” associated with a student, a window will appear that
shows a list of experiments defined in the AD along with this student’s mark for that
experiment (figure 116). If the student still has not been marked, no qualification will
appear.

 147

Figure 116. Accessing the students’ answers

When you click on an experiment, you will see the defined activities that contain tasks
where the teacher appears as “marker” in the community file, along with the answer that
the student has given (figure 117).

 148

Correction Tool

Finish Button

Finish Mode

Figure 117. Marking the student’s answers

 149

If in the AD.xml a task has been associated a correction, and in that correction has a
defined correction tool, you will see a correction tool along with the student’s answer
which will allow the tutor to qualify the task.

Once the tutor finishes correcting the results generated by the student in experiment, the
student should find out if the experiment is finished or not. To do this, select the
appropriate value of Finish mode and then click on the “Finish Button”.

If the value of Finish mode is “no” (figure 118), the tutor considers that the experiment
is still not finished, and cannot calculate the average mark of the activities nor the
experiment.
It is like this because in some cases it is not necessary to finish all the activities that
make up an experiment in order to carry it out, the tutor must consider whether the
finished activities are appropriate to fulfil the experiment.

Figure 118. The current experiment has not finished yet

If the value of Finish mode is “yes” (figure 119), the tutor considers that the experiment
is finished and calculates the average mark of the experiment and the activities that it is
made up of.

 150

Figure 119. A finished experiment

The buttons that appear in the upper part allow:

 Students Listing: allows you to go back to the page where the student list
appears.
 Experiments for this Student: allows you to go back to the page where the

experiments that are related to this specific student appear.
 Check Experiment “..”: allows you to go back to the page where the experiment

appears “..” that are related to this specific student.

4.3.4.2 Viewing

When you click on the link “View” associated with a student, you can see a window that
shows a list of experiments associated to the AD (figure 120).

 151

Figure 120. Viewing the experiments associated with an Active Document

When you click on an experiment you can see the activities defined in the experiment
that have tasks where the teacher appears as “marker” in the community file, along with
this student’s mark for this task (figure 121).

Figure 121. Activities of the current experiment that the teacher has to mark

 152

The buttons that appear in the upper part allow:
 Students Listing: Allows you to go back to the page where the list of students

appears.
 Experiments for this Student: Allows you to go back to the page were this

specific student’s experiments appear.

4.3.4.3 Details of the correction tool
This tool (figure 122) allows the teacher to mark and comment on a task done by the
student, and when you click on the button “Save” it stores the comments and marks in
the results database.

Figure 122. Marking a task and adding comments for the student

If the AD has been defined with prerequisites like “correct” or “passed” the student’s
visualization state of the AD will vary depending on the corrections and marks entered
by that student’s tutor.

4.3.5 Errors that can happen when using the system with the

role of teacher

Apart from the errors indicated in point 4.2 Working on an AD scenario as a student
within the section Errors that can happen when using the system with the role of student
you might see the following:

 153

4.4 Eliminating an AD
To eliminate an AD follow these steps:

 Eliminate the results and log databases that are being used in the AD.
 Eliminate the directory that can be found in the ADServer that corresponds to the

AD.
 Edit the configuration folder to eliminate the part which corresponds to the AD.
 Stop and run Apache again.

5 Application

A brief example application which illustrates some of the interesting aspects of the AD
system is included in deliverable D7.5, and a more detailed tutorial will be provided on
the AD System web site http://sensei.lsi.uned.es/ActiveDocument

 154

Index of Terms
Active Document, 6, 7, 9, 13, 26, 28,

36, 37, 47, 53, 82, 93, 105, 107, 123,
125, 134, 137, 145, 151

Active_doc_template, 53, 105
ActiveDocument, 5
ActiveDocument Parameter, 39
Activity, 54
Activity_organisation, 105
Actor, 105
Actor_ref, 106
AD, 5, 19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29, 30, 39, 43, 45, 46, 47, 49, 50,
52, 53, 63, 64, 65, 75, 76, 93, 96, 104,
109, 119, 120, 121, 123, 124, 125,
127, 129, 134, 135, 136, 137, 138,
146, 150, 152, 153

AD client, 33
AD system, 20, 21, 23, 25, 27, 46
AD-definition document, 53
ADServer, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 30, 31
ADServerSetup, 7, 8, 9, 16, 18, 31
Aim, 54, 56
architecture, 5
Associated to tasks, 53
attributes, 48, 67, 68, 69, 70, 71, 73, 74,

75, 79, 80, 86, 99, 100, 101, 102, 103,
111, 116, 117, 118

Bd_object, 54
Bd_relation, 55
BinaryPathO, 20, 22
BinaryPathR, 20, 22
Calculator, 133
CatalinaHome, 20, 21, 28
CatalinaPort, 20, 21, 28
Check List, 130
child nodes, 48, 66, 98
Comment, 20, 26, 37
community, 110, 113
Community, 106
Community Definition, 45
community XML file, 109
Community_ref, 106

Configuration, 10, 12, 13, 19, 20, 35,
36, 37, 39

ConfigurationAD, 20, 21
ConfigurationSystem, 20, 21
Content Information, 48, 101
Content_ref, 55, 56
Context Name, 13, 17, 18, 30
ContextName, 21, 23
correction, 28, 29, 53, 59, 61, 89, 90,

91, 137, 145, 146, 152
correction tool, 89, 149
Course, 107
Database, 12, 19, 35, 37
DataBaseLog, 21
DatabaseObject, 21, 22
DatabaseResult, 21, 22
databases, 12, 13, 15, 17, 19, 31, 36,

153
date_in, 58, 60, 75, 76, 79
date_out, 58, 60, 75, 76, 79
DBLog, 15, 17, 19, 21, 24, 31, 37
DBResults, 15, 19, 22, 25, 31, 36, 121
defining a scenario, 52
Description AD, 45, 46, 93, 104
DirResult, 22, 27
Document, 93
DrawTool, 29, 39, 53, 83, 96, 119, 128
DriverO, 22
DriverR, 22
DTDs, 44, 49
Edit AD, 47
Editing, 47, 51, 64, 96, 109
editor, 48, 49, 50, 53, 64, 70, 72, 82, 86,

92, 96, 100, 109, 112, 127, 133
Email, 133
errors, 16, 18, 44
Errors, 19, 44, 134, 152
Experiment, 56, 58, 69, 76, 124, 150
Experiment_organisation, 107
File, 93
General purpose, 53
GeneralConf, 20, 22, 23
Glossary, 56

 155

hardware and software requirements, 6
Host Name, 11
Hostname, 21, 23, 27
Icon, 23, 26, 38
Identifier, 39
idTask, 89
Information_model, 107
Inserting, 65
installation, 7, 8, 9, 12, 15, 16, 18, 19,

31, 34
interact, 146
interact with the environment, 124
interface, 123, 145
internal too, 127
internal tools, 82
Java Home Path, 12
JavaHome, 21, 23, 27
JdbcDriver, 23
labdoc, 65
Labdoc, 57, 119
Linux, 7, 8
List_ prerequisites, 58
List_communities, 107
List_roles, 58
Log, 21, 23, 24, 26, 30
Logging, 37
Login, 17, 18, 137
LogXML, 24
Mark, 146
marker, 89
markerTask, 89
Mediating_tools, 58
Menu, 24, 26, 123
Menu off | on, 128
MenuOption, 24, 25, 26
Metadata, 59
MetadataEditor, 15, 17, 18, 19, 31, 47,

64, 96, 109
mySQL, 12
MySQL, 7, 9, 12, 13, 19, 23, 25, 35, 36,

43, 46, 135
MysqlPort, 25
Name, 18, 24, 25, 38, 55, 56, 57, 94, 95,

105
NameO, 22, 25

NameR, 22, 25
Navigation menu, 128
new activity, 70
new AD, 19, 34, 47, 52
New Attribute, 68, 70, 73, 77, 85, 88,

91, 99, 111, 115, 117
new task, 72
Notepad, 133
Object, 59
OS, 21, 25, 27
outcome Definition, 46
Param, 59
ParamConf, 25, 26, 28
Parameter, 60, 94
Parameter Tool, 39
PasswdO, 22, 26
PasswdR, 22, 26
Password, 13, 17, 18, 26, 36, 43, 121,

138
PathLog, 24, 26
Port Number, 12
Prerequisite, 60
prerequisites, 75
Prerequisites, 134
Presentation, 21, 23, 26, 27, 37, 39
Reference, 60
Resource, 94
resource definition, 46, 94
resource XML file, 96
resource_ref, 84
Resource_ref, 61
Result in XML, 131
Result View, 129
results, 119
ResultXML, 21, 27
Role, 62, 94, 120, 137
role of a student, 43
role of a teacher, 43
role of student, 134
safety_guides, 56, 62, 66
Safety_guides, 62
Save associated to the activity, 133
Save associated to the AD, 133
See, 21, 48, 54, 56, 58, 59, 60, 62, 63,

94, 95, 96, 106, 107, 108

 156

Server, 7, 9, 12, 13
ServerO, 22, 27
ServerR, 22, 27
student, 120
Style, 26, 27
Stylesheet, 38
System, 7, 21, 27, 33, 121, 134, 138
task, 113
Task_organisation, 108
taskbyrole, 72
Taskbyrole, 62
Tasks List, 129
teacher, 137
Theoretical_component, 63
theoretical_components, 66
Tip, 63
Tip_content, 63
title, 24, 28, 44, 56, 58, 59, 68, 70, 71,

72, 76, 95, 123, 124
Title, 26, 28, 37
Tomcat, 5, 7, 8, 9, 12, 15, 16, 17, 18, 20,

21, 28, 30, 46, 135, 136
Tool, 95
tool bar, 48
Tool Bar, 132
ToolConf, 28, 29

Tools, 21, 28, 29, 39, 46, 53, 119
tooltest, 29, 53, 83, 120, 127
Un-installation, 16, 18, 19, 30
Updating after the changes, 17
URI_ADServlet, 23, 29
URI_BaseApplet, 23, 29
URI_Community, 19, 29
URI_RL, 19, 20, 29, 30
UriDTDLog, 24, 30
UriDTDResult, 27, 30
URL, 23, 27, 28, 39, 44
User, 12, 13, 30, 36, 119, 121
UserO, 22, 30
UserR, 22, 26, 30
Web Server Home Path, 12
Windows, 7, 33, 34
Workarea, 96
Workplan, 108
Xerces, 8
XML, 5, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 37, 44, 45, 46, 48, 49,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 93, 94, 95, 96, 104, 105,
106, 107, 108, 119, 120, 124, 132,
135, 136

 157

Table of Figures

Figure 1. The DiViLab prototype.. 6
Figure 2. Decompresing the installation file ... 8
Figure 3. Accesing the ADServer installation ... 10
Figure 4. Accessing the ADServer installation setup .. 11
Figure 5. (Setting up) Configuring the ADServer installation on our systems 14
Figure 6. Error during the ADServer installation.. 15
Figure 7. Tomcat console .. 16
Figure 8. ADServer installation finished succesfully.. 17
Figure 9. Java plugin installation... 34
Figure 10. Creating a new AD... 35
Figure 11. Configuring a new AD... 41
Figure 12. Error creating a new AD .. 42
Figure 13. New AD created succesfully.. 43
Figure 14. Accessing the ADServer .. 47
Figure 15. Choosing the AD to edit... 48
Figure 16. Selecting the AD File ... 50
Figure 17. Adding roles to a new role list (list-roles) ... 50
Figure 18. Editing the role list identifier (id) .. 51
Figure 19. Editing a new role (student) ... 52
Figure 20. Editing the AD Files... 64
Figure 21. Selecting a labdoc node ... 65
Figure 22. creating a new experiment node... 66
Figure 23. Structure for a new experiment .. 66
Figure 24. Filling in the content for the aim attribute ... 67
Figure 25. The content information attributes for an experiment.................................... 67
Figure 26. Adding the attribute name to a new experiment .. 68
Figure 27. Giving the name to an experiment ... 69
Figure 28. Experiment structure: attributes and content information.............................. 69
Figure 29. Adding a new activity to an experiment .. 70
Figure 30. Creating the attribute name for a new activity ... 71
Figure 31. Filling in the title of a new activity .. 71
Figure 32. A new activity. Attributes name and title and their values 72
Figure 33. Creating a new taskbyrole node for an activity.. 73
Figure 34. Adding an identifier to a new taskbyrole ... 73
Figure 35. Adding a list of possible roles for a task to a taskbyrole element.................. 74
Figure 36. Inspecting the attributes of a new taskbyrole element 75
Figure 37. Adding a new list of prerequisites (list_prerrequisites) to an experiment..... 77
Figure 38. The list_prerrequisites element needs an attribute id (identifier).................. 77
Figure 39. Filling in the identifier (id attribute) for the list_prerequisites element 78
Figure 40. Adding a new prerequisite (prerequisite node).. 79
Figure 41. Attributes for defining a new prerequisite ... 79
Figure 42. A new prerequisite and its attributes.. 80

 158

Figure 43. Adding a new prerequisite for the current experiment................................... 81
Figure 44. Identifying the experiment’s prerequisite... 81
Figure 45. Attributes (including a prerequisite) and content for an experiment 82
Figure 46. Adding mediating_tools to a taskbyrole... 84
Figure 47. Adding a resource_ref to a mediating_tools node ... 85
Figure 48. Adding an identifier (id) to a resource_ref .. 85
Figure 49. Filling in the id’s value for the resource_ref.. 86
Figure 50. Attributes for a resource_ref .. 86
Figure 51. Adding a new parameter (a list of param) to a resource_ref 87
Figure 52. Adding a new param (an actual parameter) to a parameter(a param list)..... 88
Figure 53. Adding the attribute name to a new param .. 88
Figure 54. Naming the param: this parameter’s name will be ‘text’............................... 89
Figure 55. Attributes for a taskbyrole .. 91
Figure 56. Adding a markerTask to a taskbyrole... 92
Figure 57. Filling in the markerTask’s name for the current taskbyrole 92
Figure 58. Selecting the resource file (RL.xml) .. 97
Figure 59. Default resource file with the basic tools included .. 97
Figure 60. Adding a new resource to the resource_list... 98
Figure 61. Adding metadata and a tool to a new resource.. 99
Figure 62. Adding the attribute id(identifier) to a new resource................................... 100
Figure 63. Filling in the name of the resource (id) .. 100
Figure 64. Attributes and content information for a new resource 101
Figure 65. Adding the (standard) metadata for a new resource 102
Figure 66. Inspecting the tool’s attributes ... 102
Figure 67. A tool requires a workarea and a parameter (a list of params) 103
Figure 68. Attibutes for defining a workarea .. 103
Figure 69. A param (an actual parameter named ‘themperature’) 104
Figure 70. Choosing the community file (CF.xml) ... 109
Figure 71. course structure showing the relevant nodes list_communities and workplan

... 110
Figure 72. Adding a new community node to a list_communities 111
Figure 73. Adding the attribute id (identifier) to a community 111
Figure 74. Filling in the value for the community’s id... 112
Figure 75. Adding a new actor to a community... 112
Figure 76. Adding the attribute id for the new actor ... 113
Figure 77. A community_ref including an actor_ref ... 114
Figure 78. Assigning a community (by means of community_ref) to a task 115
Figure 79. Adding the attribute id to a community_ref.. 115
Figure 80. Filling in the community’s id value for the community_ref 116
Figure 81. Adding the actor who will be responsible for this community. 117
Figure 82. Creating the attribute id for the new actor ... 117
Figure 83. Filling in the value of the actor_ref’s id attribute .. 118
Figure 84. Required attributes for the actor_ref .. 118
Figure 85. AD Server interface: selecting the AD... 120
Figure 86. System access window ... 121

 159

Figure 87. Login as test user.. 122
Figure 88. Installation dialog for the required software .. 122
Figure 89. The Active Document interface ... 123
Figure 90. Working with the Active Document .. 125
Figure 91. Using a tool for the Experiment1’s Task1.. 126
Figure 92. Results for the tasks which have been carried out 126
Figure 93. The editor: adding comments... 127
Figure 94. Multiple-choice testing tool (tooltest) ... 127
Figure 95. Drawing tool (DrawTool) .. 128
Figure 96. Changing the document view (menu off) .. 129
Figure 97. Displaying the state of the tasks... 130
Figure 98. Viewing the student’s answers... 131
Figure 99. The student’s answers in XML format .. 132
Figure 100. The toolbar’s components .. 133
Figure 101. An error message: a prerequisite has not been satisfied 134
Figure 102. Timed out connection message .. 135
Figure 103. Unable to connect to MySQL server dialog... 135
Figure 104. Reporting an unexpected error ... 136
Figure 105. Tomcat console: session output ... 136
Figure 106. Choosing an AD to work as a teacher.. 137
Figure 107. System access window... 138
Figure 108. Login as teacher (marker) .. 139
Figure 109. AD Correction or Monitor Selection ... 139
Figure 110. Aspects of the Monitor interface.. 142
Figure 111. Aspects of the Monitor interface.. 142
Figure 112. Aspects of the Monitor interface.. 143
Figure 113. Aspects of the Monitor interface.. 144
Figure 114. Aspects of the Monitor interface.. 144
Figure 115. The Active Document’s teacher’s interface... 145
Figure 116. Accessing the students’ answers .. 147
Figure 117. Marking the student’s answers... 148
Figure 118. The current experiment has not finished yet .. 149
Figure 119. A finished experiment .. 150
Figure 120. Viewing the experiments associated with an Active Document................ 151
Figure 121. Activities of the current experiment that the teacher has to mark.............. 151
Figure 122. Marking a task and adding comments for the student 152

161

